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ABSTRACT

This research is concerned with improving an existing algorithm to accurately forecast
thunderstorm starting times for Cape Canaveral, Florida. This was accomplished by
investigating different linear regression techniques than those used in the existing
algorithm. The result is three new thunderstorm start time algorithms. The forecast start
times bf these new algorithms were then compared to actual thunderstorm start times to
determine which method produced the most accurate results. The average thunderstorm
starting time was also calculated from the data. This time was also compared to actual
thunderstorm starting time. Upon examination of the various start times produced, it was
found that all algorithms, including the original algorithm, performed worse than using

the average thunderstorm start time.
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1. Introduction

Many thunderstorm algorithms have been created that give an overall probability of a
thunderstorm occurring on a given day. This is useful information for both
meteorologists and the average person. One aspect that always tends to be overlooked,
however, is the starting time of the thunderstorm occurrence. That is, given that a
thunderstorm is expected to occur on a given day, what time will it occur? Generally, a
vague notion of early morning or late afternoon is given but this is hardly scientific and
gives the impression that the meteorologist is taking a “best-guess.” Not only will
knowledge of the timing of the thunderstorm maximize safety for individuals working
outside, it will also reduce costs to weather sensitive operations. Therefore, a review of
the current techniques to find thunderstorm timing with the intent of improving accuracy
can have an important effect on operations, especially if an even more accurate timing

scheme can be applied.

1.1 Overview

The 45™ Weather Squadron (WS), located at Patrick Air Force Base (AFB) in Florida
is responsible for forecasting all weather phenomena at Patrick and for supporting
operations at Cape Canaveral, Florida. Not only is the squadron responsible for flight
weather briefings for pilots, but they also produce launch weather forecasts for the launch
weather officers located on the Cape who deal with satellite and shuttle launches.
Obviously, weather plays an important role in many operations underway at Patrick AFB
and the Cape. See Figure 1 for the geographic location of Cape Canaveral (Kennedy

Space Center) in Florida.
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Figure 1 Map of Florida

Of particular interest to the 45™ WS is if and when a thunderstorm will occur.

Currently, the 45™ WS has one method to estimate the start time of a thunderstorm

occurring on station. This method is the Neumann-Pfeffer Thunderstorm Index (NPTI)
which was created in 1971 and has recently been shown to have some inaccuracies
(Howell 1998). More recently, this index has been improved by examining different

constants and regression techniques (Everitt 1999). As of this writing, Everitt’s new

index is not operational because all programming was performed in Mathcad®. The




forecasters at Patrick AFB do not have access to Mathcad® nor do they know how to use
it. The NPTI calculates the probability of a thunderstorm occurring on a given day and
also claims a starting time with an error factor of +/- 1 % hours when given 5 inputted
values (Neumann 1971). This starting time is reported at 1100UTC and is valid that
same day. This thesis will focus on finding a better algorithm for thunderstorm starting

time with better error factors.

12 Background

Thunderstorms play an important role in the day-to-day operations at the 45" WS,

‘Thunderstorms restrict all flight operations, maintenance personnel and ground

operations at Patrick AFB and Cape Canaveral. Unfortunately the weather squadron is
located in the state that has the highest concentration of thunderstorms in the nation.
Falls et al. (1971), Byers and Rodebush (1948), and many others have also commented
that the area where Patrick AFB is located is subject to one of the highest frequencies of
thunderstorms in the world. Obviously, the incidence and timing of thunderstorms is of

utmost importance to all individuals concerned with operations that are weather sensitive

at Patrick AFB and the Cape.

1.2.1 Thunderstorms
In order for a thunderstorm to occur, three ingredients are necessary: moisture,
instability, and lift. Florida has all of these ingredients in abundance. First, Florida is a

peninsula and as such is nearly completely surrounded by water and has ample moisture.




To make matters worse, Patrick AFB is surrounded by rivers which increase the amount

of moisture in the area. Figure 2 shows the geographic location of Patrick AFB and Cape
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Figure 2 Map of Cape Canaveral

Canaveral and available moisture for thunderstorm formation. Secondly, Florida is
located far south enough that the instability caused by the warm summer temperatures is
further enhanced by the subtropics. Therefore, the instability over this region is highly

conducive for thunderstorm formation. Finally, lift is also abundant in Florida. Synoptic




lifting along with a meso-scale trigger has long been known to cause thunderstorms in the
mid-latitudes. Byers and Rodebush (1948) determined that these synoptic features
generally do not reach far enough south in Florida during summer to cause this lift.
However, it has been determined that the necessary lift can be supplied by the sea-breeze
(Byers and Rodebush 1948; Gentry and Moore 1954; Frank et al. 1967; Pielke and
Cotton 1977; Burpee and Lahiff 1984; Blanchard and Lopez 1985 and many others).

This interaction of the sea breeze and the local environment becomes the largest predictor

of lift and also the timing of thunderstorm occurrence (Byers and Rodebush 1948).

1.2.2 Neumann-Pfeffer Thunderstorm Index (NPTI) and Timing Scheme

The NPTT is the current tool used by the 45™ WS to forecast thunderstorm probability
and starting time. It was created in 1971 by Charles Neumann, and it calculates the
probability of a thunderstorm occurring at Cape Canaveral and also reports a time that the
thunderstorm can be expected on station. In order to find the thunderstorm starting time,
the probability of a thunderstorm occurring must first be calculated. Neumann’s
probability index uses the day number, the 850 mb and 500 mb orthogonal wind
components, the 800 mb to 600 mb mean relative humidity, and the Showalter Stability
Index (SSI) to come up with the probability of a thunderstorm occurring. The above
variables are individually regressed linearly by month against the dependent variable,
daily thunderstorm occurrence. In essence, the first regression produces a probability of
thunderstorm occurrence when only considering one variable. This probability of

thunderstorm occurrence is then placed into another equation and again linearly regressed




againgt thunderstorm occurrence. The final result is a probability of thunderstorm
occurrence with all five parameters being considered. The data set used in the regressions
encompasses the years from 1950 — 1951 and 1957 — 1969. Once the thunderstorm
probability has been calculated it is used to find the starting time. For Neumann’s data
set, he calculated the average starting time of thunderstorms over the Cape and after
assuming normality, calculated the standard deviation. He found that if the orthogonal
wind components at 850 mb, forecast probability of thunderstorm occurrence and day
number were considered, then the standard deviation for thunderstorm starting time could

be predicted and a starting time could be deduced.

1.3 Statement of Problem

How can thunderstorm timing accuracy be increased for Cape Canaveral, Florida?
The first way to increase timing accuracy is to increase the accuracy of the thunderstorm
probability. Once an increase in accuracy for thunderstorm probability has been attained,
the new probability may be useful in producing better times. |

. This thesis will report on four different methods of improving this timing. First, a
logistic regression to find the probability of thunderstorm occurrence is examined instead
of using a linear regression (Everitt 1999). The new probability of thunderstorm
occurrence is then applied using Neumann’s timing scheme to see if it produces more
accurate results. The second technique requires using Neumann’s orjginal method to
détermine the probability of thunderstorm occurrence and performing a new linear
regression for the start times. Next, logistic regression to find the probability of

thunderstorm occurrence is used in conjunction with the new linear regressions to




produce start times. Finally, the average thunderstorm start time is calculated and the

difference in time between the average and actual thunderstorm start times is calculated.

1.3.1 Objectives

The purpose of this thesis is to develop a method to improve the timing forecast for
thunderstorms at Patrick AFB and Cape Canaveral. The goal is to create an algorithm
with improved timing accuracy over that which is Being used currently. Because vaeritt
(1999) found that logistic regression increases the hit rate of thunderstorm occurrence by
17%, it appears that using this probability technique in Neumann’s timing scheme could
increase the accuracy. This increased accuracy would lead to better forecasts, and all
parties stationed at Patrick AF B and Cape Canaveral concerned with weather effects

would benefit from this knowledge.

1.3.2 Scope

This thesis will be limited to the study of summer thunderstorm timing at Cape
Canaveral, Florida. Thunderstorm timing, from 1950 to 1998, recorded by the official
observations is used as the dependent variable in several statistical analyses. This
research will only examine thunderstorms that occurred in the convectively active season
which is defined here as the months from May to September. This period also
corresponds to the period used both in Howell’s and Everitt’s studies (Howell 1998;
Everitt 1999).

One important aspect of this study is that the 45™ WS forecast is issued at 1100UTC

so that any upper air data examined after this time is irrelevant. Thus, only upper air data




before 1100UTC which occurs on a thunderstorm day is examined. The upper air data is
used to produce probabilities of thunderstorm occurrence and new time coefficients.
Eighty percent of the data is used to produce the probabilities and new linear
regressions, while the remaining twenty percent is withheld and used for verification
purposes. The verification data consists of randomly selected days extracted from each

summer month. The forecast is valid from 0700L — 2400L.

1.3.3 Benefit of Solving the Problem

During every summer season at Patrick AFB, thunderstorms play an important role in
most operations. All flights and launches must be cancelled and personnel must leave the
flight line and launch sites when thunderstorms are in the area. This causes both delays
and costly man-hours lost. An increased accuracy in forecasting the timing of a
thunderstorm on station can reduce the number of delays and cancellations. For example,
a flight that is expected to occur in the afternoon when a thunderstorm is expected on
station can possibly be moved to earlier in the day or to another day without any of the
aforementioned people being affected. Patrick AFB is also responsible for launch
forecasts for Cape Canaveral. Once again, thunderstorms will delay any and all launches.
If, however, the timing of a thunderstorm is known beforehand, then the individuals
responsible for launching these vehicles can possibly change the take-off time to one
when no thunderstorm is forecast. Roeder (Personal Communication, 1998) has
estimated that it costs $1 million just to de-fuel then prepare the space shuttle again after

a thunderstorm is forecast. Obviously, an improved timing scheme will give the




operational team a better chance to tailor all flights and launches to avoid expected

thunderstorms.

1.4 Procedure

This thesis involved three main tasks: data collection and manipulation, regression,
and verification. The first task, data collection and manipulation, was the most time
consuming and also the most important. Upon receiving the data from the Air Force
Climatology Center (AFCCC), the surface observations were matched up with the
corresponding upper air data for the same day and month using Microsoft® Access. This
upper air data was then examined for all days with data that corresponded to 1100UTC or
earlier. Ifthe upper air data had values only after 1100UTC then they were removed
from the data set, as was the surface observation. The upper air data then had to be
examined to determine if all reported values were present. Unfortunately, the upper air
data had missing values which were needed to calculate some of the inputted parameters.
Therefore, these values were interpolated. Finally, the interpolated upper air data was
used to calculate the values that were needed in the NPTI and timing scheme.

Modifying the type of regression was the second task. Neumann used linear
regressions to determine the probability of thunderstorm occurrence and also to find the
timing coefficients in his timing scheme. It has been found that using logistic regression
to find the probability of thunderstorm occurrence produces better results (Everitt 1999).
Logistic regression was used applying the same predictor variables as Neumann, and then
this new probability result was used in Neumann’s timing scheme. Furthermore,

Neumann’s timing scheme used linearly regressed variables that he deemed necessary for




accurate timing. A new linear regression was performed with a larger data set to produce
new timing coefficients. Finally, the logistic probability regression was used in
conjunction with the newly regressed time coefficients to come up with a new
thunderstorm starting time. Another method to. examine thunderstorm start times is to
compare the average thunderstorm start time to actual thunderstorm start times.

The last task, Veriﬁcation, determined which method should be used operationally. By
comparing the means and standard deviations from all five methods to the actual starting
time of a thunderstorm, it was seen that the average thunderstorm outperformed the new

algorithms as well as the NPTL

1.5 Summary of Results

The NPTI, three forecast start time algorithms and the average thunderstorm start time
were used to forecast thunderstorm time on station. These results were then compared to
the actual tﬁunderstorm start time. A mean and standard deviation of timing error was
produced. Two hundred sixty eight random, independent events were used as the
verification set. All algorithms performed worse than using the average thunderstorm

starting time.

1.6 Outline of Thesis

A review of relevant literature on this subject can be found in chapter 2. Chapter 3
expands discussion of the data and analysis techniques, followed by a complete
discussion of methodology in chapter 4. Chapter 5 presents results, conclusions, and

suggestions for future research.
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2. Literature Review

Many experiments have been performed over the Florida peninsula to determine what
factors contribute to thunderstorm development. One important factor that has been
found to cause them is the formation of the sea breeze. The sea breeze can give an
insight as to when a thunderstorm can be expected to occur because these two phenomena

are related.

2.1 Sea Breeze Formation

The sea breeze is a well-known meteorological phenomenon. The sea breeze forms
between landmasses and water and is caused by diurnal solar heating and radiation of the
land. As the solar radiation strikes both land and water, they heat up. However, since the
thermal capacity of water is much greater than that of land, the land will heat up faster.
As the ground warms up, the air will rise and be replaced by cooler air from the adjacent
water. This rising air will then move back over the water and sink. This transverse
circulation will cause an on-shore sea breeze during the day and an offshore land breeze
at night (Reed 1979).

This vertically rising air, if strong enough, can cause thunderstorms. Therefore, the
formation of sea breezes, resulting convergence, and the accompanying vertical motions
play an important role in thunderstorm development when close to a large water source.
The Florida peninsula is an excellent example to study since it is surrounded by the

Atlantic Ocean and the Gulf of Mexico.

11




2.2 Synoptic Wind Flow

Blanchard and Lopez (1985) postulated that several factors are responsible for the
daily fluctuations in sea breeze circulations. However, the consensus of opinion is that
the most important factor is the synoptic wind flow (Estoque 1962; Nicholls ef al. 1991;
and others). Blanchard and Lopez (1985) further hypothesized that different synoptic
regimes can cause discrete temporal and spatial patterns of convection. Therefore, the
sea breeze timing, intensity, motion, and accompanying convection should be dependent
on the synoptic scale wind flow. In order to see if this was true, Blanchard and Lopez
(1985) examined a large rainfall data set. This data set was then compiled to produce a
composite rainfall data set. Upon examination of this composite rainfall data, it was
apparent that three distinct types of days of rainfall were prevalent over Florida during

summer months. For clarity, they are called Type I, Type II, and Type III days.

2.2.1 Type I days

Type I days occur when Florida is under the influence of the Atlantic high. The
accompanying synoptic wind flow is from the southeast and is usually weak (Figure 3).
As the East Coast Sea Breeze (ECSB) sets up, convection forms along this boundary in
the early afternoon, and the general wind flow moves the sea breeze inland. The West
Coast Sea Breeze (WCSB) also sets up but moves inland more slowly since the opposing
synoptic wind flow partially cancels out the effect of the on-shore flow. The ECSB
moves further inland while the WCSB slowly moves inland from the other direction and

they finally merge over the western-central interior of the peninsula. Since the merging of
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Figure 3 Mean Synoptic Wind Field for Type I days (Blanchard and Lopez 1985)

both sea breezes enhances vertical motion, strong convection takes place in this region

and thunderstorms develop (Blanchard and Lopez 1985).

2.2.2 Type 1I days

Type II days are caused by a continental high which is generally located over the
southeastern United States and causes easterly synoptic winds over Florida (Figure 4).
This continental high air mass will hinder convection due to its stable lapse rate and
relatively low moistﬁre content. Once the ECSB forms, it will move rapidly inland and
trigger convection but on a much weaker scale than Type I days. The WCSB will also set
up, but it will remain relatively stationary since the synoptic wind flow will balance the

on-shore flow. Once the two sea breezes meet on the western side of the peninsula,
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enough forcing will result so that stronger convection will develop along the West Coast.
This convection causes thunderstorms to form that are weaker than the Type I days and
more short-lived, since the prevailing wind flow will push the storms over the Gulf of

Mexico where they will decay (Blanchard and Lopez 1985).

Figure 4 Mean Synoptic Wind Field for Type II days (Blanchard and Lopez 1985)

2.2.3 Type III days

Type III days occur because of the Atlantic high which is now situated further east and
south of the peninsula. The synoptic flow will be from the south-southwest (Figure 5)
causing warm advection and corresponding vertical lifting to occur over the entire
peninsula. Therefore, the atmosphere will become destabilized and conduciv¢ for
convection. As expected, both sea breezes will set up along their corresponding coasts,

but convection will start almost immediately. The synoptic wind flow will then push the
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WCSB inland and keep the ECSB stationary. However, since this flow is from the south-
southwest the WCSB will not reach the East Coast until late in the afternoon. Therefore,
two lines of intense thunderstorms will set up: one along the East Coast and the other on
the West Coast. They will steadily move eastward. Since the atmosphere is very
unstable, the movement of the WCSB will cause convection that remains in the
immediate area well after this sea breeze has moved further east. Unlike Type I and II
days, Type III days exhibit an almost peninsula-wide echo area with most areas
experiencing thunderstorms. This takes plaqe because of the vertical velocities associated

with the sea breeze circulations which are strongly modified by the synoptic scale forcing

(Blanchard and Lopez 1985).

Figure 5 Mean Synoptic Wind Field for Type III days (Blanchard and Lopez 1985)

15




2.3 Sea Breeze Circulation Models

The observed results have been simulated using various models. While these models
do not take into account all meteorological parameters, they exhibit a good simulation of
the atmosphere when a sea breeze circulation is present. Furthermore, the models can
estimate the magnitude of the vertical velocities. These models give the meteorologist
the ability to input different values for the synoptic wind flow so that the model can
emulate the different types of days that occur over Florida. Nicholls et al. (1991) states
that these models have shown conclusively that the convergence of the East and West
Coast sea breezes are the primary controls on the timing and location of rapid convective

development.

2.3.1 Model Run for Type 1 Days

After the models ingested geostrophic wind values that match Type I days, the models
produced excellent simulations of the actual sea breeze circulations. Once the two sea
breezes had set up, the simulated ECSB moved inland at almost twice the speed of the
WCSB. Before the two sea breezes converged, the vertical velocities were found to be’
on the order of 3 m/s. Once the sea breezes had merged, the vertical velocities grew to a
maximum value of 8 m/s (Nicholls ef al. 1991). One would expect strong thunderstorms
to develop where this merging took place. This held true according to the actual
observationé. Another model simulation, using different parameters to simulate the sea
breeze circulation, also found that with Type I geostrophic winds, the spatial distribution

of thunderstorms matched closely with what was observed (Estoque 1962).
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2.3.2 Model Run for Type II days

The model runs also performed well when geostrophic winds matching those of the
Type II day were introduced. As expected, convection developed along both coasts but
the convection over the West Coast was advected over the ocean where it decayed.
Eventually the sea breezes converged, but further west than was found in the Type I case.
This occurred because the synoptic wind flow pushed the ECSB inland much more
rapidly because the synoptic flow was almost normal to the sea breeze circulation
(Estoque 1962). Once the two sea breezes merged, stronger convection occurred just
inland of the West Coast. This convection formed thunderstorms that then moved over
the Gulf and decayed while new cells continually developed along the sea breeze
boundary. The vertical velocities determined by the models were approximately 6 m/s,
which matched up with the findings that thunderstorms on Type II days Were‘ weaker than

those of Type I days (Nicholls et al. 1991).

2.3.3 Model Run for Type III days

As anticipated, the models performed well when using a southwesterly geostrophic
wind component. Once the two sea breezes formed, convection occurred along both
coasts. Then, as the WCSB moved eastward, convection spread quickly and a major
portion of the peninsula became convectively active. When the two sea breezes merged,
rapid thunderstorm development occurred approximately 10 km east of the center of the
peninsula. These cells corresponded to a vertical velocity of approximately 6 — 8 m/s.
There was one discrepancy between the model and the observed convection, however.

This simulated convection did not last as long as the observations indicated. It was
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determined that since the models only examined meso-scale features, the widespread
destabilization of the atmosphere due to the synoptic forcing had not been considered in
the model. Nicholls et al. (1991) believed that, indeed, synoptic-scale forcing
mechanisms were responsible for this difference. |

Many journal articles illustrate thét the general synoptic wind flow is the major
influence on where convection and thunderstorms will develop. By using a composite
rainfall data set qunchard and Lopez (1985) showed that three types of days exist. They
also showed how sea breezes influence convection over the peninsula during the summer.
Nicholls et al. (1990) and others, employing different techniques, used sea breeze models
to show the relationship between sea breeze circulations and thunderstorm development.
This information can be used to forecast thunderstorms over the peninsula and especially
over the Cape. Given a specific synoptic wind field, meteorologists can determine the
general development and movement of the sea breezes and where convection is most
likely to form. A meteorologist would also be able to determine the intensity and
duration of the thunderstorm(s) based on the strength of the sea breeze. Thus, a reliable
forecast for thunderstorms over or near the Cape could be made several hours prior to a

launch and operations could be tailored to protect personnel and assets.

2.4 Background Work

A large amount of the background work for this thesis was accomplished by Charles
Neumann in the 1960’s. In this time period, he produced three technical reports:
“Frequency and Duration of Thunderstorms at Cape Kennedy,” “Frequency and Duration

of Thunderstorms at Cape Kennedy Part II: Applications to Forecasting,” and
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“Thunderstorm Forecasting at Cape Kennedy, Florida: Utilizing Multiple Regression
Techniques.” It should be noted that the name Cape Kennedy has since changed to Cape
Canaveral. After he completed the first two technical notes, he wrote his third report that
describes his forecasting technique and gives the current algorithm (NPTI) thch is still
being used to this day. This algorithm uses five predicfors that are taken from a morning
sounding and are used in producing a thunderstorm probability forecast and the timing of
that thunderstorm. The following sections will discuss each article and then show how

the algorithm works to produce these thunderstorm probabilities and timing.

2.4.1 Frequency and Duration of Thunderstorms at Cape Kennedy Part I
Neumann’s first report in 1968 examined summer (as described earlier) thunderstorm
- frequencies for Cape Canaveral for the period from 1950 — 1951 and 1957 — 1969 . This
in-depth report examined conditional and nonconditional climatological probabilities of
thunderstorms. Neumann found that a 15-day moving average best described this actual
frequency (Neumann 1968). The equation used is shown in equation 1 and the plot can

be seen in Figure 6.

Where A, =moving average on day number N
Tx = frequency of one or more thunderstorms on day k

N = total number of days over period of record
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FIGURE 6 NEUMANN 15 -DAY MOVING AVERAGE USING 15 YEARS OF
DATA (NEUMANN 1968)

Neumann determined that the shape of this plot showed that thunderstorm probability
was directly correlated to the day number (i.e., May 1 = 12.5% chance of thunderstorms
occurring, Aug 1 = 52% chance of thﬁnderstorms occurring). Neumann deduced the 15-
day moving average by trial and error. He found that moving day averages other than 15
showed excessive smoothing or were too computationally expensive (Neumann 1968).

This discovery led to the day number being a predictor variable in the NPTI.
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2.4.2 Frequency and Duration of Thunderstorms at Cape Kennedy, Part II

Neumann’s second study (1970) examined the winds associated with thunderstorms at
Cape Canaveral. Specifically, he discussed the characteristics of the wind speed and
direction of the 3,000 foot winds. The 3,000 foot winds were chosen because this wind
level takes into account the sea-breeze effect on thunderstorm occurrence (Neumann
1970). He then plotted a series of ellipses of the wind and then split them into their # and
v components. The same data was used as in his first study. The ellipses showed the
magnitude of the u and v components and how they differ for each summer day.

Neumann used the regression estimation of event probabilities (REEP) method to
bound the wind values. When using REEP, there is a slight chance that the forecast
probabilities will be less than zero or greater than one (Wilks 1995). Thus, Neumann
used the ellipses to bound the wind values to diminish the chance of an unrealistic
probability result.

After Neumann had examined wind direction and wind speed separately, he examined
them together as one parameter. He concluded that this combination of wind direction
and speed was the most important factor for thunderstorm occurrence and should be

included in his final algorithm (Neumann 1970).

2.4.3 Thunderstorm Forecasting at Cape Kennedy, Florida, Utilizing Multiple
Regression Techniques

In Neumann’s final report, he quickly reviewed his previous findings and discussed
non-linear multiple regressions. He found that non-linear trends in the data were
statistically significant and so they were included in the regression analyses (Neumann

1971). To account for this non-linear trend, he included 2™ or 3™ order polynomials to
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represent the independent variables. It should be noted that Neumann had a pool of over

250 predictors, and after examining their correlations to thunderstorm occurrence, he
determined that 5 predictors were the most important (Neumann 1971). The five

predictors and respective polynomial functions can be found below:

2 2 3 2 2 3
F(X1) :=A0+A1~S+A2'T+A3~S~T+A4~S +A;T +AS +A,; S T+AgST +AyT

F(X2) =By + B, U+ B, V4 By UV+ B, U+ B,V + B U’ + B, UV+ By UV + By:V
F(X3) :=C, + C, RH+ C, RH’ 4 C; R’

F(X4) 1=D, + D, -SSI+ D, SSI

F(X5) i=E, + E-DAY + E, DAY’

Where S & T = u and v components of 850 mb wind in knots
U & V = u and v components of 500 mb wind in knots
RH = 600-800 mb mean relative humidity in percent
SSI = Showalter Stability Index in degrees Celsius
DAY = Day number
X1 = 850 mb wind in knots
X2 = 500 mb wind in knots
X3 = 600-800mb mean relative humidity in percent

X4 = Showalter Stability Index in Degrees Celsius

22

(2)

3

(4

(3

(6)




X5 = Day number
Neumann set thunderstorm occurrence to a value of zero which corresponded to no
thunderstorm occurring and the value one to a thunderstorm occurring. For instance,
using Equation 2, if a thunderstorm occurred on a given day, a one was placed in F(X1)
and the corresponding u and v components for the day were inserted into the right side of
the equation. This was accomplished for all thunderstorm and no thunderstorm days.
The resulting equations were then linearly regressed and the coefficients were found.

The resulting F(X) values were then inserted into the prediction equations given below:

P(MAY) :=H, + H, F(X1) + H, F(X2) + H,-F(X3) + H,F(X4) + H F(X5) NG
P(JUN) =1 + I -F(X1) + L F(X2) + L, F(X3) + I, F(X4) + [-F(X5) (8)
P(JUL) =]+ J,-F(X1) + J, F(X2) + J3-F(.X3) +1,F(X4) + 1 F(X5) 9)
P(AUG) :=K, + K, ‘F(X1) + K, F(X2) + K, -F(X3) + K, F(X4) + K F(X5) (10)
P(SEP) :=L, + L, F(X1) + L, F(X2) + L, F(X3) + L, F(X4) + L, F(X5) (1)

Where X1 = 850 mb wind in knots
X2 =500 mb wind in knots
X3 = 600-800 mb mean relative humidity in percent
X4 = Showalter Stability Index in degrees Celsius

X5 = Day number
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Once all F(X)’s were known, Neumann used the distribution of thunderstorm occurrence
agéin and set this value equal to the right side of the equations above. After being
linearly regressed, the constants in the prediction equations (7) — (11) were found. In
order to find the probability of thunderstorm occurrence, all that was needed was the 850
mb and 500 mb wind components, mean relative humidity, Showalter Stability Index and
day number. These values were used in conjunction with the already known coefficient
values and a probability was produced. The coefficient values for equations (2) — (11)

can be found in Appendix A.

2.4.4 Thunderstorm Starting Time

To determine the thunderstorm starting time, Neumann calculated the average starting
ﬁime of thunderstorms using his data set as described earlier. He found the sample mean
to be 1434 Eastern Standard Time (EST). Neumann then assumed these times were
normally distributed about the mean and that two-thirds of the thunderstorm starting
times (+/- 1 standard deviation) would be expected between the hours 1204 and 1705
EST (Neumann 1971). According to Kachigan (1991), for a given population there may
be any number of different parameters in which a person is interested, e. g., mean,
median, standard deviation. One approach to find the estimated parameter of interest is
to obtain a single value based upon a sample of observations, a value which is thought to
be the best possible approximation of the true value of the population parameter
(Kachigan 1991). What Neumann found was that when looking at four parameters, he
could produce an estimate of the sample standard deviation as given above. Neumann

determined that by using the 850 mb orthogonal winds, probability of thunderstorm
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occurrence and day number, the estimate of standard deviation produced was within the
actual sample standard deviation from his data set (+/- 1 %2 hours). To find the estimated
thunderstorm start times, a third-order polynomial expansion of the four parameters was

performed. This equation can be found in Equation 12

Thunderstorm Start Time = C1 + Cz-y + C3-y2 + C4-y3 + C5 X+ C6-x-y + C7~x-y:Z + Cg-x2 + C9-x2~y

3 2 2
+ Clo-x + C11~w+ Clz-w-y+ Cls-w-y + C14~w-x+ Cls-w-x-y+ C16~w-x

2 2 2 3 2
+ C17-w + Cls-w + C19~w X4 C20~w + C2|'V+ C22-v-y + C23-v-y
‘ 2
+ C24-v‘x+ C25-v~x-y + C26-v-x + C27-v-w+ C28-v'w-y + C29-v-w-x

2 2 2 2 2 3
+ C30~v~w +C3]<v +C32~(v 'y>+C33'v X+ C34-v W+ C35'v

Where y = Thunderstorm Probability
x = Day Number
v =850 mb u wind component in knots

w= 850 mb v wind component in knots

In order to solve this equation, Neumann took his data set and simultaneously solved
Equation 12 using the starting times of actual thunderstorms. On completion, 35 time
coefficients were produced and used in the final algorithm. These constants can be found
in Appendix B.

Finally, Neumann mentioned his verification process. He used the month of June as a

- verification month and applied the equations to arrive at thunderstorm probabilities and

thunderstorm starting time. After completing this process, he determined that his
thunderstorm starting times had an estimated margin of error of +/- 1 % hours of the

forecast starting time (Neumann 1971).
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3. Methodology

This chapter discusses the data used in this thesis. It is important to understand how
the variables were calculated and what tools were used to account for missing data. In
addition, the methods used to recreate the NPTI as well as the new algorithms are

discussed.

3.1 Data Used

Surface observations and upper air data from 1950 — 1998 recorded at the official
observation site at Cape Canaveral was used. This data was obtained from AFCCC and
was given in Microsoft® Excel spreadsheets. Table 1 shows which years had surface
observations available for analysis. Table 2 shows which upper air data was available for

analysis.

Table 1 Available Surface Observations

May June July August September
Years with 1950 - 1977 1950 - 1977 1950 - 1977 1950 - 1977 1950 - 1977
Observations 1987 - 1998 1987 - 1998 1987 - 1998 1987 - 1998 1987 - 1998

Table 2 Available Upper Air Observations

May June July August September
Years 1950-1970 1950-1969 1950-1969  1950-1969 1950 - 1969
Available 1983-1998 1983-1998 1983-1998  1983-1998 1983 - 1998
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These surface observations were then matched up with the upper air data. Microsoft®
Access was used to perform this task. The day and year of each surface observation was
compared to the day and year of each upper air observation and when a match occurred,
this upper air observation was placed in a new spreadsheet. When this was completed, all
surface observations had corresponding upper air observations.

One important stipulation given by the Patrick AFB forecasters was that the forecast
needed to be produced by 1100UTC. Therefore, any upper air observations taken after
this time would be of no use to the forecaster for that day. Unfortunately, on some
thunderstorm days, upper air observations were only taken after 1100UTC. To screen the
data, Microsoft® Access was used and_ both surface observations and upper air data were
examined. Ifthe time for any given day’s upper air data was after 1100UTC, then the
data was removed together with the matching surface observation. The resulting
spreadsheet had surface observations for thunderstorm days with upper air data that was
received before 1100UTC only. Table 3 below shows all years that had surface

observations and upper air data which had been received before 1100UTC.

Table 3 Years with Available Surface and Upper Air Observations

May June July August September

1950-1969 1950-1969  1950-1969  1950-1969 1950 - 1953

Years 1987 - 1988 1987 -1988 1987 -1988  1987-1988 1958 - 1969

Available 1992 -1998  1991-1996  1992-1998  1992-1998 1987 - 1988
1998 1998
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3.2 Interpolation

The upper air data was examined for any values of “999.” Values of “999” attributed
to a parameter indicated that that parameter was missing. Another interesting note is that
prior to 1970, all upper air observations were reported from 1000 mb upwards in 50 mb
increments. After 1970, all pressure levels recorded by the rawinsonde were reported.

To recreate the NPTI it was decided that using 50 mb increments was the most prudent
method of using data. For this reason, one interpolation technique was used but the
methods were different for the different types of data given.

To find missing data from 1950 — 1970, an Interactive Data Language© (IDL) program
was created. The method used to interpolate is the same method a meteorologist would
use when given a Skew — T diagram with missing data. When plotting a Skew — T
diagram with missing values, the meteorologist will place an X at the pressure level
where this missing parameter is located. The meteorologist then draws a line from value
to value. When an X is present the meteorologist will connect the lower and upper value,
drawing a straight line through the pressure level where the missing value is located.
This interpolated line now gives an estimate of the missing value. The interpolation
scheme created does this in exactly the same way. This is scientifically sound, assuming
the missing parameters do not change drastically over a small vertical distance. The most
common parameters missing were the temperature and dewpoint. This program can be
found in Appendix C.

For the data from 1971 and onwards, a Microsoft® Qbasic program was written. This
program was written to ensure that all upper air data started at 1000 mb and increased

upwards in 50 mb increments. The program determined if a 50 mb level was missing. If
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so, the level above and below was extracted and the missing pressure level values was
exported to a new file. Once completed all upper air data was reported from 1000 mb to

500 mb in 50 mb increments. This Quick Basic program can be found in Appendix D.

3.3 Computations

Before being able to compute a probability and time for thunderstorm occurrence, two
computations must be performed to arrive at the predictors needed. Neumann determined
that the 800 — 600 mb mean relative humidity was important as well as the Showalter

Stability Index (SSI). These computations are described in the next two sections.

3.3.1 Mean Relative Humidity

In Neumann’s reports, he determined that the 800 — 600 mb mean relative humidity
gave a reasonable approximation for the amount of moisture in the atmosphere (Neumann
1971). He also showed that the correlation between moisture and thunderstorm
occurrence was high and therefore should be included in his algorithm. The equation
used to find the mean relative humidity in this thesis is adapted from the Air Weather
Service’s (AWS) Technical Report 83/001 (Duffield and Nastrom 1983). The equation

used is as follows:

((RH(1) + RH(i+ 1)) (In(P(i) — In(P(i+ 1)))))

MeanRH =
In(800) - ln( 600) ‘ 2

(13)

Where: RH(i) = relative humidity at 800 mb at RH(1), 750 mb at RH(2), etc.
P(i) = pressure at level i so P(1) =800 mb, P(2) =750 mb, etc.
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- The IDL® program used to compute the mean relative humidity can be found in

Appendix E.

3.3.2 Showalter Stability Index

The SSI is a thunderstorm index that is used to determine the possibility and severity
of a thunderstorm occurrence. The process to find the SSI manually is lengthy when
dealing with a large data set. Once again, an IDL® program was adapted from the AWS
Technical Report 83/001 (Duffield and Nastrom 1983). The description of the values
generated by using the SSI are given in Table 4. The IDL program that calculates the SSI

can found in Appendix F.

Table 4 Values of SSI and Descriptions

Value of SSI Description
1to3 Thunderstorms Possible
0to-3 Unstable

Thunderstorms Probable

-4 to -6 Very Unstable
Good Heavy Thunderstorm Potential

<-6 Extremely Unstable
Good Strong Thunderstorm Potential

3.4 Types of Regression

Regression is that part of statistics which deals with the investigation of the
relationship between two or more variables related in a non-deterministic fashion

(Devore 1995). There are many different types of regressions, and the following sections
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explain the two used in this thesis: Regression Estimation of Event Probabilities (REEP)

and logistic regression.

3.4.i REEP

REERP is a regression approach that, in this case, estimates thunderstorm occurrence.
Neumann used this method because it involves only multiple linear regression to derive a
forecast equation for thunderstorm occurrence. Theoretically, it is pqssible to forecast
probabilities that are either negative or greater than one. That is, if a probability of .10 is
produced there is a 10% chance of a thunderstorm occurring while a probability of -.27 is
rounded to a 0% chance of a thunderstorm occurring.

Neumann applied REEP but also took into account the non-linear response of the
predictor values. By using polynomial equations to describe each predictor, this non-
linear response is accounted for. Each polynomial is then linearly regressed against
thunderstorm occurrence. Once accomplished, a set of coefficients is produced for each
polynomial function. Now a value for the predictors needed in the second regression can
be calculated given the coefficients and the inputted predictor values.

These values are then passed into a second regression. Once again, the new predictors
are set equal to thunderstorm occurrence and linearly regressed. As before, new
coefficients are created and used find the probability of the occurrence. In order to find
the probability of a thunderstorm occurring, the predictors are inserted into the first linear
equation. The computed predictor values are then placed into the second regression and a

final probability is given.
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To find the timing coefficients, Neumann used simple linear regression. He realized
that the non-linear trends in the predictors also needed to be accounted for in this
equation. The resulting equation produced 35 unknown coefficients. By setting this
equation equal to thunderstorm starting time, he simultaneously solved the equations by
using linear regression and determined the timing coefficients. Similarly, to find the
starting time it was necessary to insert the predictor values into the final equation and a

thunderstorm starting time was produced.

3.4.2 Logistic Regression
A more theoretically satisfying regression method is a technique called logistic
regression (Wilks 1995). Neter (1983) found that when the predictand is not continuous,
a curvilinear function should be used. Logistic regression accomplishes this by assuming
an exponential distribution. This causes the regression to be bounded by zero and one,
thus preventing the possibility of an unrealistic probability. The equation used in logistic
regression is as follows:
eB otB X
E(Y) = (14)

BoytB,x
l4e 0 1

Where 3¢ = coefficient that changes the horizontal placement of the curve

1 = coefficient that changes the slope of the curve




3.5 Research Approach

Once all data was interpolated and calculations performed, new algorithms were

developed. The following sections discuss how the algorithms were created.

3.5.1 Neumann Probability (NP) and Neumann Timing (NT)

The NPTI was recreated and used as a baseline from which to test the new methods
described in this thesis. Mathcad® was used to process the algorithms. Within the
program, the first calculation needed was to decompose the 850 mb and 500 mb winds

into their corresponding orthogonal components. The formulas used are shown below:

U:= sin[(Dir)'

)47 {-SPD (15)
180

T

V =cos| (Dir)-
180

+n].SPD (16)

Where U = u component for 850 or 500 mb wind
V = v component for 850 or 500 mb wind
. Dir = wind direction at either 850 or 500 mb in degrees

Spd = wind speed at either 850 or 500 mb in knots

Day number was calculated by first examining the month. If the month examined was
May, then it was known that 150 days had already passed. To find the day number for a

date in May that date was added to 150. This same method was repeated for the other




months. The mean relative humidity and SSI were extracted using Mathcad’s® built-in
functions.

To perform the first regression, a matrix of coefficients was entered into Mathcad®. In
this first case, these were the same coefficients that Neumann used. Then each predictor
was inserted into the equation and solved. These values were then passed to the second
regression equaﬁon, with corresponding coefficients, and a probability for thunderstorm
occurrence was produced.

This probability, along with the 850 mb u and v components and day number, were
then used to find the thunderstorm starting time. Neumann’s timing coefficients were
entered into Mathcad® and the timing equation was solved. The resulting number is
expressed in hours and fractions of hours. Next it had to be expressed in hours and
minutes. A simple program was used to convert the given number into hours and
minutes. Here, the minutes were represented as a proportion of an hour so they were
multiplied by 60 to express the number of minutes in real time. The entire program can

be found in Appendix G.

3.5.2 Logistic Regression Probability (LRP) and Neumann Timing (NT)

In this thesis, the first algorithm created used logistic regression to find thunderstorm
probability, which was passed into Neumann’s timing scheme using his coefficients to
produce a starting time. Everitt (1999) found that using logistic regression provided a
more accurate forecast probability than linear regression did. The logistically regressed

coefficients calculated by Everitt are listed in Appendix H.
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Mathcad® Was again used to find the probability and timing of thunderstorms.
Everitt’s (1999) previously calculated logistic coefficients were used in the regression.
Of important note is that the Everitt’s (1999) logistical coefficients given for May
produced incorrect probabilities. The resulting probabilities varied from a value of 10 up
to 100. Since all other months produced reasonable probabilities between 0 and 1, May
was dropped as a month to be examined. One possible reason for this aberration was a
typographical error in Everitt’s thesis.

The new logistic probability of thunderstorm occurrence was calculated and was
placed in Neumann’s timing scheme. The same method as mentioned earlier was used to .

calculate the thunderstorm starting time. This program can found in Appendix I.

3.5.3 NP and Linearly Regressed Timing Coefficients (LRTC)

The second algorithm created in this thesis uses Neumann’s method of finding the
probability of thunderstorm but employs new linearly regressed timing coefficients. In
this method a new linear regression was executed to find new timing coefficients. This
was accomplished by first calculating the predictor values for each combination given in
Equation 12. The corresponding thunderstorm starting time for that day’s data was then
set equal to the calculated predictor values. After linear regression, 35 new timing
coefficients were created. These new timing coefficients can be seen in Appendix J.

To find this new starting time, Neumann’s probability of thunderstorm occurrence was
placed in the timing scheme using the newly derived timing coefficients and new

thunderstorm starting times were produced. This program can be found in Appendix K.




3.5.4 Logistic Regression Probability (LRP) and Linearly Regressed Timing
Coefficients (LRTC)

The final algorithm used both logistic regression to find thunderstorm probability and
1 the timing scheme using new linearly regressed coefficients. The new linearly regressed
coefficients using logistically regressed probabilities can be found in Appendix L. This
was very easy to accomplish since both of these steps had been previously performed.
The calculated logistic probabilities were inserted into the timing scheme with the new

~ timing coefficients. As before, another thunderstorm starting time was produced. This

program can be found in Appendix M.

3.5.5 Average Thunderstorm Starting Time

| One last method used to examine thunderstorm start times is to use the average
thunderstorm start time calculated from the entire data set. All thunderstorm start times
were placed in one spreadsheet and then an average of all these times was produced.
This average start time can then be compared to actual thunderstorm start times. The

calculated average thunderstorm start time was found to be 1504 EST.

3.6 Verification Data Set

In order to verify the new timing schemes, some of the original data was withheld
from the regressions and used to calculate thunderstorm starting times. These calculated
thunderstorm forecast starting times were used to compare the accuracy to the actual
thunderstorm starting times. Sufficient data was available that 20% could be withheld for

verification purposes. Twenty percent of the data was randomly removed using
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Mathcad®. First, Mathcad® randomly picked row numbers. These extracted values were
stacked into a new matrix. The day number and years were used to remove the same day
number and year manually in the regression equations. This ensured that the data in the
verification set would be independent of the new regressions. These extracted rows were
used in each method for finding thunderstorm probability and starting time. Because
there were five ways to examine each month (NPTI, LRP with.NT, NT with LRTC, LRP
with LRTC, average fhunderstorm start time) it was imperative that the same random
rows were extracted for each type of regression in each month. Fortunately, Mathcad’s®
seed function ensured that when using the same data set to pull random data samples, the
same random numbers would be extracted. For instance, when using Neumann’s method
to find thunderstorm starting tifne a certain number of rows were randomly removed from
the month of June for verification purposes. These same rows in June were removed
from the other four methods which ensured that the verification data set was the same for

each method. This program can be found in Appendix N.




4. Statistical Analysis and Results

Statistical analysis is an important aspect of this thesis. These analyses ‘quantify the
improvement achieved and identify which timing scheme should be implemented for
each montil. Descriptive statistics are the best way to examine how these schemes
perform. They examine the relationships between the actual thundérstorm starting time
and the forecast starting times. For each month, five methods are examined: NP with NT,
LRP with NT, NP with LRTC, LRP with LRTC, and finally average thunderstorm start
time. Once all the different times were produced they were subtracted from the actual
thunderstorm start time. If the forecast time was later than the actual time the resultant
was less than zero. If the forecast time was earlier than the actual time the resultant was
greater than zero. By using this method? the estimated mean and standard deviations for
each method could be examined. Of important note is that the sponsor for this thesis was
more concerned with achieving the smallgst standard deviation possible. Therefore,
when looking for the “best” method, the smallest standard deviation will be considered.

The next sections will discuss the results by month.

4.1 June Timing Schemes

For the month of June, 65 days were used as the test set. The starting times were
produced as mentioned in Chapter 3 and then compared to the actual starting time. The
average mean error and standard deviation can be seen in Table 5.

Table 5 Mean and Standard Deviation of Error between Actual Starting Time and
Forecast Starting Time for June

NP with NT  LRP with NT ~ NP with LRTC LRP with LRTC Avg Tstorm Time

MEAN - 44 min - 46 min -1 hr -1 hr 13 min - 24 min

STD DEV 3 hr 7 min 2 hr 49 min 2 hr 54 min 4 hr 9 min 2 hr 13 min
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It can be seen from Table 5 that the smallest mean error of thunderstorm starting time is
achieved by using the average thunderstorm start time. It should be noted that when
using NP with NT, LRP with NT and the method using NP with LRTC all produce
standard deviations that differ on the order of minutes. Unfortunately, any forecasts with
standard deviations as large as those in Table 5 are not an asset for a forecaster. For
~example, if while using NP with NT a forecast starting time of 1200 EST is produced,
then thunderstorms can be expected between 0853 EST and 1507 EST. Obviously, this
range is too wide to be very useful operationally.

Another way to examine this data is to plot a normal distribution with the means and
standard deviations given in Table 5. This normal plot Will give a visual idea as to how
the methods differ. In order to plot the graph, it must first have a known mean (p) and

standard deviation (0). These values are then inserted into the equation given below:

o) = 1 o <2.<;2> (17

Equation 17 is an example of a probability density function (PDF). PDF’s are the
continuous, theoretical, analogs of the familiar histogram and must satisfy Equation 18

(Wilks 1995).

f(x)dx:=1 (18)




No specific limits of integration have been in included in Equation 18 because different
probability densities are defined over different ranges of the variable X. Unfortunately,
the height of f(X), when evaluated at a particular value of X, is not meaningful in a
probability sense. This happens because the probability is proportional to the area under
the curve, and not to the height. For example, if X =1, by itself f(1) is not meaningful in
terms of the probability of X since the probability of X =1 is infinitesimally small (Wilks
1995). It is significant, however, to find values surrounding X =1 (say from X =.95 to X
=1.05). This is accomplished by integrating Equation 17 from .95 to 1.05.

Figure 7 below is a plot of the PDF for the five different methods used to find
thunderstorm forecast start time. In order to plot the graph, all that is needed are values of
X. These are arbitrarily selected so that the graph encompasses all values where y is
positive. By plotting the five means and standard deviations in this way, one plot can
visually show how the means and standard deviations differ for each method. The values
on the y axis are simply values of the function given in Equation 17 for different X
values. It must be remembered that the values on the y axis are not probabilities for the
reasons mentioned above. The probabilities are equivalent to the area under the curve for
given values of X (in this case, hours) and are found by integrating equation 17 for given

X values.
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Figure 7 Graph of Mean and Standard Deviation Error from Actual Starting Time
for June

From this figure, it can be seen that using logistical regression to find the probability of

thunderstorm occurrence whilst using the new linearly regressed timing coefficients (LRP
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with LRTC) produces the worst result. The standard deviation for the LRP With-LRTC
causes the normal curve to be more widely dispersed about the mean than the other four
methods. Obviously then, using the average thunderstorm time to forecast actual start
times is the method to use since the standard deviation is much smaller as shown by the
tightness of the curve around the mean.

The final fnethod to examine these results is to produce a Box and Whiskers plot using
the computer program, Statistix®. Each box plot in Figure 8 is composed of a box and
two whiskers. The box encloses 50% of the data. This box is also bisected by a line
which represents the value of the median. The vertical lines at the top and bottom of the
box are called the whiskers, and they indicate the range of “normal” data values.
Whiskers always end at the value of an actual data point and cannot be longer than 1%
times the size of the box. Extreme values are displayed as * for possible outliers and O
for probable outliers. Possible outliers are values that are outside the box boundaries by
more than 1% times the size of the box. Probable outliers are values that are outside the
box boundaries by more than 3 times the size of the box. One important use of the box

and whiskers plot is the ability to graphically compare several batches of data at one time

(Wilks 1995).
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Box and Whisker Plot for June
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Figure 8 Box and Whiskers Plot of Error Data for June

Figure 8 confirms that LRP with LRTC produces the worst result. This is shown by the
large number of outliers on the plot. LRP with LRTC has the largest number of outliers
of all methods. In addition, all the outliers are in the negative region of the plot which
shows this method has a tendency to forecast a thunderstorm start time many hours
earlier than when the thunderstorm really occurred. Using the average thunderstorm start
time is the best method to use because this plot shows these forecast start times are
reasonably symmetric about the median, the whiskers are smaller indicating the forecast
times will be closer to the actual time of thunderstorm occurrence and there are no

outliers.
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After examining all previous figures, it is apparent that the average thunderstorm start
time method should be used when forecasting thunderstorm start times for the month of
June. The average thunderstorm start time has both the smallest mean error and standard
deviation from the actual thunderstorm start time. This ensures that the spread of
estimated thunderstorm starting times will be closer to the actual time. The normal plot
visually demonstrates how the average thunderstorm time creates a tighter spread of start
time. The box and whiskers plot also showed that when using the average thunderstorm
start time to predict actual start times it produces a closer forecast start time than the other

methods examined.

4.2 July Timing Schemes

For the month of July, 86 days were used as the verification set. The starting times
were produced and then compared to the actual starting time. The average mean error and

standard deviation can be found in Table 6.

Table 6 Mean and Standard Deviation of Error between Actual Starting Time and
Forecast Starting Time for July

NP with NT  LRP with NT NP with LRTC LRP with LRTC Avg Tstorm Time
MEAN - 22 min -1 hr 7 min -26 min -19 min -14 min

STDDEV 3hr41min 4 hr6 min 2 hr 55 min 3 hr 23 min 2 hr 11 min

Using the average thunderstorm start time produces the best timing standard deviation

outperforming all other methods by a minimum of 44 minutes. The mean starting error




is also the best since it only misses on average by 14 minutes and so would appear to be
the best method to use. Using the same methods as described in section 4.1, this

information can be normalized and plotted. This graph can be seen in Fig 9.
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Figure 9 Graph of Mean and Standard Deviation Error from Actual Starting Time
for July




From this figure, it is easily seen that using logistical regression to find the probability
and using Neumann’s timing coefficients (LRP with NT) produces the worst result
because the peak is the lowest of all methods plotted indicating a large standard
deviation. It is also apparent that using average thunderstorm starting time is the best
method to use since the peak is much higher indicating a tighter spread around the mean.

The box and whisker chart for this data set can be seen in Figure 10.

Box and Whisker Plot for July
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Figure 10 Box and Whiskers Plot of Error Data for July
Upon examination of Figure 10 it is not so readily apparent which method achieves the

best results. All box sizes are relatively the same size so 50% of the data for each method

is within the same error margin. The whiskers for each plot differ greatly, however. The
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smallest whiskers occur when LRP with NT is used and the next smallest occur when the
average thunderstorm starting time is used. From this graph alone, it appears that LRP
with NT would be the best method to use. The 3 probable outliers which occur when
using this method, however, are much worse than when using the average thunderstorm
start time. Since this thesis is concerned with achieving the “best” start time, the average
thunderstorm start time appears to be the best method to use.

The iaverage thunderstorm start time should be used when forecasting thunderstorm
times for July. Not only does it have a smaller standard deviation to the other methods
examined, the start time it does produce has a higher chance of being closer to the actual

time than the other methods.

4.3 August Timing Schemes

For the month of August, 86 days were used as the verification set. The starting times
were produced as previously mentioned and then compared to the actual starting time.

The average mean error and standard deviation can be seen in Table 7.

NP with NT  LRP with NT ~ NP with LRTC LRP with LRTC Avg Tstorm Time

MEAN - 47 min -1 hr 6 min -54 min -24 min -3 min

STD DEV 4 hr 6 min 3 hr 52 min 3 hr 2 min 3 hr 15 min 2 hr 35 min
Table 7 Mean and Standard Deviation of Error between Actual Starting Time and
Forecast Starting Time for August

In August, it was found that the average start time performed the best as far as the

standard deviation and mean error are concerned. The normal plot for August can be

found in Figure 11.
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Figure 11 Graph of Mean and Standard Deviation Error from Actual Starting Time
for August

This plot shows that indeed, using the average thunderstorm start time produces a tighter
standard deviation about the mean. Also, the height of the mean is much higher than all
other methods examined.

The box and whisker chart for this data set can be seen in Figure 12.




Box and Whisker Plot for August
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Figure 12 Box and Whiskers Plot of Error Data for August

This plots gives more insight into which is the best method to use for August. Of note, is
the number of outliers for all methods examined. The large number of outliers for all
algorithms shows that these methods have a higher chance of producing an incorrect
forecast whereas the average thunderstorm start time produces no outliers. As can be
seen above, the average thunderstorm start time produces small whiskers and no outliers
indicating a very good chance of being closer to the actual thunderstorm start time than
the other methods.

When forecasting thunderstorm starting times in August, the average thunderstorm
start time should be used. Using the average start time will guarantee a closer forecast

start time to the actual thunderstorm compared to the other methods.




4.4 September Timing Schemes

For the month of September, 31 days were used as the verification set. The average

mean error and standard deviation can be seen in Table 8.

NP with NT  LRP with NT ~ NP with LRTC LRP with LRTC Avg Tstorm Time

MEAN 49 min 2 hr 33 min -37 min 33 min -3 min

STD DEV 5hr 23 min 4 hr 10 min 4 hr 30 min 4 hr 23 min 3 hr 6 min

Table 8 Mean and Standard Deviation of Error between Actual Starting Time and
Forecast Starting Time

In the month of September, there appear td be some larger inconsistencies between
methods. For-one, the LRP with NT method has a very large mean error when compared
to the other methods. Also, the NP with LRTC and LRP with LRTC methods have
somewhat similar standard deviations but with much better mean error. However, the
average thunderstorm start time performs better than all methods examined both in mean
error and standard deviation.

The normalized plot of this data can be found in Figure 13.
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Figure 13 Graph of Mean and Standard Deviation Error from Actual Starting Time
for September

This plot clearly shows how much the LRP with NT’s average changes the location of

the plot. The large mean error causes the curve to be plotted further towards the positive




x-axis. This plot also shows the similarities in standard deviations between the NP with
LRTC and LRP with LRTC. Once again, the height of the plot using average
thunderstorm start time is much higher due to the standard deviation. The box and

whisker chart for this data set can be seen in Figure 14.

Box and Whisker Plot for September
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Figure 14 Box and Whisker Plot for September

Figure 14 shows some differences between the four methods. First, when NP with NT
and the NP with LRTC methods are used a negatively symmetric plot around the median
is produced. This indicates that the forecast start times will predict thunderstorm start
times many hours earlier than when they actually occur. When using LRP with NT or

LRP with LRTC the whiskers are somewhat smaller but the box is so large that no
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conclusion can be reached as to which method to use. However, when examining the
average thﬁnderstorm start time boxplot, a smaller box is produced with smaller whiskers
indicating these times are closer to the actual thunderstorm start time.

The average thunderstorm start time should be used when forecasting thunderstorm start
times for September. All tables and figures indicate that using the average start time will

produce times that are more accurate.
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5. Conclusions and Recommendations

This thesis research was conducted to determine if it was possible to increase the
accuracy of forecast thunderstorm start time for Cape Canaveral, Florida. The NPTI
algorithm was used as a baseline to compare four methods of forecasting thunderstorm
start time. The main concern was to decrease the standard deviation of the forecast start
times. Neumann (1971) stated that when using his scheme, a thunderstorm should occur
within +/- 1 % hours of the forecast start time. The original goal was to decrease this
error factor. After using Neumann’s index, creating three new ones, and applying the
average thunderstorm start time, it was found using the NPTI to forecast thunderstorm

start time is highly suspect.

5.1 Conclusions

NPTI was used as a baseline to compare the thunderstorm start times it produced with
four methods. Logistic regression was incorporated into the probability forecast of
thunderstorms occurring and then applied while using Neumann’s prior calculated
timing coefficients. Another method incorporated logistic regression in the probability
forecast While new timing coefficients were created. A third method took Neumann’s
method of finding probability and using the newly created timing coefficients to create
start times. Finally, the average thunderstorm start time was calculated and used to
compare thunderstorm start times. Each month had five different results for starting
time. It should be noted that the standard d.eviations for all méthods were quite large and
may not be as operationally useful as hoped. The average thunderstorm start time

outperformed every method, including the NPTI, for each month. The fact that the
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NPTI performs worse than when using the average thunderstorm start time indicates
that the NPTI is useless when forecasting thunderstorm start times and should not be

used by the 45" WS.

5.2 Recommendations

It is recommended that a different method be used to calculate thunderstorm start
time. From this thesis, it has been found that by using the average thunderstorm start
~ time to forecast the next thunderstorm occurrence produces the smallest standard
deviation of error. If no other method is applied, members of the 45™ WS can calculate
the average start time using their much larger data set and use this as a forecast
thunderstorm start time. Above all else, the NPTI should no longer be used to forecast

thunderstorm start times.

5.3 Suggestions for Further Research

One way to improve upon the average fhunderstorm starting time as a predictor for the
next thunderstorm occurrence is to continually update the average. That is, have a
spreadsheet with all thunderstorm start times included and update the spreadsheet each
day with the thunderstorm start times that occurred that day. Obviously, the
thunderstorm start time average will not change much from day to day but it will be
current for the next forecast period. Furthermore, these average thunderstorm start times
could be split into different times of day. For instance, all thunderstorms that occurred

betWeeﬁ 0600 EST and 1200 EST could be averaged, 1201 EST and 1800 EST could be
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averaged and so on. The forecaster then only needs to decide if a thunderstorm will
occur, forecast what time frame and use the appropriate thunderstorm start time average.
Another way to produce timing of thunderstorm occurrence would be to examine
persistence. From the literature review, it was found that specific types of days cause
different timing and spatial distributions of thunderstorms. Thefefore, realizing the
synoptic pattern over Florida does not change drastically from day to day and the weather
pattern today was very similar to what occurred yesterday, the time of thunderstorm
occurrence yesterday can be used to forecast today’s thunderstorm start time. This '

method appears to the author to be the next logical step in producing a method to

accurately forecast thunderstorm start times.




APPENDIX A

CONSTANTS FOR NPTI

MAY JUNE JULY AUGUST SEPTEMBER

F(X1) F(X1) FOX1) F(X1) F(X1)
0.1787416000000 | 0.3326784000000 | 0.4307867000000 | 0.3627524000000 0.2816768000000
0.0107402000000 | 0.0217243800000 | 0.0436669700000 | 0.0327221100000 0.0125651800000
0.0136565100000 | 0.0216295000000 | 0.0105547500000 | 0.0108520700000 0.0058043300000
0.0004523660000 | 0.0003762057000 | -0.0000398328100 | -0.0000562318700 0.0001096534000
-0.0001802959000 | -0.0006835819000 | -0.0003116464000 | 0.0010389140000 -0.0002671096000
0.0003397791000 | 0.0002579025000 | -0.0018889460000 | -0.0003726890000 0.0000146929100
-0.0000105183800 | 0.0000011790030 | -0.0000561663000 | -0.0000335472600 -0.0000109952000
-0.0000395436500 | 0.0000014379340 | 0.0000775770300 | -0.0001055251000 0.0000029256110
0.0000337641000 | -0.0000337377000 | -0.0000541738000 | -0.0000067723910 0.0000032287110
0.0000016774350 | -0.0000219971000 | 0.0000351905200 | 0.0000160676300 -0.0000033257030

F(X2) F(X2) F(X2) F(X2) F(X2)
0.1206249000000 | 0.2927881000000 | 0.4145883000000 | 0.3932798000000 0.2527479000000
0.0108646000000 | 0.0263845000000 | 0.0316634000000 | 0.0311971900000 0.0108420400000
0.0100196400000 | 0.0102330700000 | -0.0007151263000 | 0.0025457310000 0.0031367860000
0.0002794513000 | 0.0003206672000 | 0.0005390949000 | 0.0001592548000 0.0001899334000
-0.0001012098000 | 0.0000705507000 | 0.0000425100900 | 0.0000966280900 -0.0002175208000
0.0001964561000 | 0.0001576005000 | -0.0000509110800 | 0.0000288785200 -0.0000354789100
-0.0000019293880 | -0.0000309031700 | -0.0000242554500 | -0.0000374513500 -0.0000054498940
-0.0000109538900 | -0.0000142248900 | 0.0000158115900 | -0.0000171733700 -0.0000044273360
-0.0000065125540 | 0.0000055886060 | -0.0000217213400 | -0.0000170416500 0.0000061225120
-0.0000019319070 | -0.0000092254160 | -0.0000106090400 | 0.0000040829210 0.0000054122320

F(X3) F(X3) F(X3) F(X3) F(X3)
0.1037449000000 | 0.1350110000000 | -0.1029031000000 | 2.5624930000000 0.1736004000000
-0.0119685400000 | -0.0199929100000 | -0.0029067590000 | -0.1702073000000 -0.0191829100000
0.0004832994000 | 0.0008150658000 | 0.0004229306000 | 0.0035513890000 0.0006220711000
-0.0000035704430 | -0.0000063425780 | -0.0000033083010 | -0.0000216134100 -0.0000044144120

F(X4) F(X4) F(X4) F(X4) F(X4)
0.4273235000000 | 0.6102192000000 | 0.6177575000000 | 0.5271789000000 0.4078606000000
-0.0748021000000 | -0.0806676100000 | -0.0642101800000 | -0.0353019900000 -0.0637667800000
0.0030567000000 | 0.0024037560000 | 0.0013104110000 | -0.0010948830000 0.0025719610000

F(X5) F(X5) F(X5) F(X5) F(X5)
-0.5430778000000 | -0.1323037000000 | 0.9355280000000 | -0.4163536000000 3.7580340000000
0.0068556030000 | 0.0010708580000 | -0.0037718160000 |  0.0139472400000 -0.0228789000000
-0.0000105370700 | 0.0000120896200 | 0.0000069185940 | -0.0000449318900 0.0000359878500

Final Probability
Coefficients
-0.1589600000000
-0.5503100000000
0.3738200000000
0.3233200000000
0.5656900000000
0.0205300000000

Final Probability
Coefficients
-0.5556200000000
0.6102500000000
0.4851800000000
0.3646000000000
0.3541600000000
0.6391500000000

Final Probability
Coefficients
-0.5553800000000
-0.6370500000000
0.4154200000000
0.4982000000000
0.4217900000000
0.2361400000000

Final Probability
Coefficients
-0.4623000000000
-0.6391600000000
0.4061400000000
0.4244200000000
0.5676600000000
0.0606200000000

Final Probability
Coefficients
-0.6183000000000
-0.5269300000000
0.6065500000000
0.5539000000000
0.4831500000000
1.2949100000000




APPENDIX B
NEUMANN TIME COEFFICIENTS
(Cy, Cy,...C35 in Equation (12))

To be Used for
Each Month
12.7383100000000
-55.2478500000000
16.7874300000000
-3.0446580000000
0.1428297000000
0.4120300000000
-0.0598436800000
-0.0010206330000
-0.0008332961000
0.0000020103010
1.0912470000000
-0.2395890000000
0.8079287000000
-0.0097428530000
-0.0033307730000
0.0000257237800
0.0032750300000
-0.0000011280650
0.0000392877200
-0.0003878205000
0.0385699100000
0.2283849000000
-1.1152510000000
-0.0013180920000
0.0057003430000
-0.0000002110866
0.0052097110000
0.0000525338400
0.0000045646360
-0.0006700146000
0.0126041900000
0.0099107550000
-0.0001220748000
0.0001705095000
-0.0000491474000




APPENDIX C
INTERPOLATION PROGRAM USING IDL®

Pro interp

; This program will interpolate missing data from upper-air soundings
; First, the number of lines in the sounding must be calculated

n =20

s = AY \

close, 5

openr, 5, ‘UAJUNE.txt’ ; This opens my upperair data for
; June

whilenot (eof)) do begin ; If the end of the file has not
; been reached '
; start reading data lines

readf, 5, s ; Read the file and also number of

; spaces
if (strlen(s) GT 5) thenn = n + 1 ; If the length of spaces exceeds 5
) ; then that data line is finished.
; Read next line
endwhile

; Read in the sounding data

data = fltarr(1il,n)
readf, 5, data
close, 5

; The next lines give each column of the new array a name

time = datal0, *]
day = datall, *]
month = datal2, *]
year = datal3,*]
pres = datal4,*]
hgt = datal5, *]
temp = datalé, *]
dp = datal7,*]
dir datals, *]
spd datal9, *]
rh = datal[10, *]

; The following line identifies the missing values of temperature

blanks = Where(strpos(temp,’999.0’) GE 0, bc) ; This gives row numbers
; where 999 is reported

nonblanks = Where (strpos(temp,’999.0’) LT 0, nbc) ; This gives all row




; numbers where temp
; 1s reported

;The following for loop finds the number given before and after a 999
;is reported

for i = 0L, bc-1 do begin
before = max{(where (nonblank LT blanks(i))) ; This finds the first
; number given before a
; 999 is reported

after = min(where (nonblank GT blanks (i))) ; This finds the fist
; number after a 999
; is reported

; The following equation calculates the missing value

temp (blanks(i)) = temp(nonblanks (before)) + ((temp(nonblanks(after)) -$
temp (nonblanks (before)))* (float (blanks (i) - nonblanks (before))/float $
(nonblank (after) - nonblanks (before))))

endfor

;The following lines use the same method to find the missing dewpoints

blanks = Where(strpos(dp,’999.0’) GE 0, bc)
nonblanks = Where (strpos(dp,’999.0’) LT 0, nbc)

for i = 0L, bc-1 do begin
before = max(where (nonblank LT blanks(i)))
after = min(where (nonblank GT blanks (1)))

dp (blanks (i)) = dp(nonblanks (before)) + ((dp(nonblanks (after)) -$

dp (nonblanks (before)))* (float (blanks (i) - nonblanks (before))/float $
(nonblank (after) - nonblanks (before))))

endfor

;To find the missing RH values Teton’s Formula was used

norh = Where (strpos(rh,’999.0’) GT 0 ,bc)

for i = 0L, bc-1 do begin

rh(norh(i)) =

100* (6.112*EXP((17.67*dp (1)) /dp(i)+243.5)))/(6.112*EXP((17.67$
*temp (i) )/ (temp (i) +243.5)))

endfor

; Now a new array is formed with all interpolated values

array = [time,day,month,year,pres,hgt,temp,dp,dir, spd, rh]
;The following lines output the array to a new file




openu, outfile, “juninterped.txt”, /get_ lun
form='(5.0,2x,£f5.0,2x,£5.0,2x%,f5.0,2x,£f5.0,2x,f5.0,2x,£5.0,2x,f5.0,2x, f
5.0,2x,£5.0,2%x,£f5.0,2x) "

for i =0,n-1 do begin
printf,outfile,time (i) ,day (i), month(i),year (i) ,pres(i),hgt (i), temp(i),d
p(i),$

dir(i),spd(i),rh(i), format = form

endfor

close, outfile

free_lun, outfile

end
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APPENDIX D
QBASIC® PROGRAM FINDS NEAREST 50MB INCREMENT
THIS DATA IS THEN USED IN THE PROGRAM GIVEN IN APPENDIX D

'Initial Variables
InputFileName$ = "C:\Thesis\UA\Juntext.txt": 'Read from file

OutputFileName$ = "C:\newjunua.txt": 'Output to file

TotalNumberOfLinesReadSoFar = 0
FileHasBeenExhausted$ = "False"

'Clear The Screen
CLS

'Open Files For Input And Output

OPEN InputFileName$ FOR INPUT AS #1
OPEN OutputFileName$ FOR OUTPUT AS #2

DO UNTIL FileHasBeenExhausted$ = "True"

'Read Through‘The Lines Read So Far.
'Must Close And Open The File, So That
'Reading Begins At The Beginning.

CLOSE 1
OPEN InputFileName$ FOR INPUT AS #1
FOR ReadThroughThelines = 1 TO TotalNumberOfLinesReadSoFar

'These Are Just Dummy Numbers That Are Ignored.
'This Is Being Done To Get Through The File

INPUT #1, Hour, Day, Month, Year, Pressure, Height,
Temperature, DewPoint, WindDirection, WindSpeed,
RelativeHumidity

NEXT

'Find Out How Many Rows There Are Of The Same Time And Date.
'First, Read In What Is Going To Be Matched Against.
'"Note: The 'F' In Front Of Each Variable Name Abbreviation for

'First Of It's Kind

INPUT #1, FHour, FDay, FMonth, FYear, FPressure, FHeight,
FTemperature, FDewPoint, FWindDirection, FWindSpeed,
FRelativeHumidity

'Now Loop Until No Match For Time, Day, Month And Year Is Found,
'Keeping Count Of The Number Of Matching Rows.

NumberOfMatchingRows = 0

DO
IF EOF (1) THEN FileHasBeenExhausted$ = "True": EXIT DO

INPUT #1, Hour, Day, Month, Year, Pressure, Height,
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Temperature, DewPoint, WindDirection, WindSpeed,
RelativeHumidity
NumberOfMatchingRows = NumberOfMatchingRows + 1

LOOP WHILE (FHour Hour AND FDay = Day AND FMonth = Month AND
FYear = Year)

i

'Now Build Arrays That Are Large Enough To Hold

'The Data For This Matching Set Of Times And Dates

'These Next 3 Lines Are For The One Instance When The Last Line
'0f The Input File Has Just Been Hit.

IF FileHasBeenExhausted$ "True" THEN
NumberOfMatchingRows = NumberOfMatchingRows + 1
END IF

'Build The Arrays. Note: REDIM Must Be Used When Arrays Are
'Going To Be Resized In The Middle Of A Program, Otherwise DIM
'Is Used

REDIM HR (NumberOfMatchingRows)
REDIM DY (NumberOfMatchingRows)
REDIM MO (NumberOfMatchingRows)
REDIM YR (NumberOfMatchingRows)
REDIM PR (NumberOfMatchingRows)
REDIM HT (NumberOfMatchingRows)
REDIM TP (NumberOfMatchingRows)
REDIM DP (NumberOfMatchingRows)
REDIM WD (NumberOfMatchingRows)
REDIM WS (NumberOfMatchingRows)
REDIM RH (NumberOfMatchingRows)

'Populate The Arrays With The Data

'But First Read Through The Lines Read So Far.

'This Must Be Done Because The Program Has, Already Read Through The
'Data Is To Be Placed In The Array, Must Read Again From The
'Beginning.

CLOSE 1

OPEN InputFileName$ FOR INPUT AS #1
FOR ReadThroughTheLines = 1 TO TotalNumberOfLinesReadSoFar

'These Are Just Dummy Numbers That Will Be Ignored.
'This Is Being Done To Get Through The File

INPUT #1, Hour, Day, Month, Year, Pressure, Height, Temperature,
DewPoint, WindDirection, WindSpeed, RelativeHumidity
NEXT

'Now Program Knows How Many Rows There Are Of The Same Time And
'Date. They Are Used To Populate The Arrays With Data

FOR ReadData = 1 TO NumberOfMatchingRows




PRINT "Reading New Data"; ReadData
INPUT #1, HR(ReadData), DY(ReadData), MO (ReadData),
YR (ReadData), PR{(ReadData), HT(ReadData),
TP (ReadData), DP{(ReadData), WD(ReadData),
WS (ReadData), RH(ReadData)
NEXT
PRINT "Reading Through Line"; ReadThroughTheLines

'Next Line Counts How Many Lines Have Been Read Through

TotalNumberOfLinesReadSoFar = TotalNumberOfLinesReadSoFar +
NumberOfMatchingRows

'Now The Array Holds All The Data With Matching Time And Date
'Time To Start Looking For Matches.
FOR PressureToCheck = 1000 TO 500 STEP -50

'Find The Closest Pressure In The Array That Is Above And Below
'The Value Of PressureToCheck.

'And Also Check For A Perfect Match.

'But Before Looking, Set Up Initial Values Before Each Pass

MatchFound$ = "False"

MatchRow = 1

ClosestValuelAbove = 9999
RowOfClosestValuelAbove = 1

ClosestValueBelow = 0

RowOfClosestValueBelow = NumberOfMatchingRows

'Read The Input File And Compare
FOR CurrentRowInArray = 1 TO NumberOfMatchingRows

'Look For A Perfect Match.

IF PR(CurrentRowInArray) = PressureToCheck THEN
MatchFound$ = "True"
MatchRow = CurrentRowInArray

END IF

'Check If This Row Is The Closest Value Above Whats
'Being Looked For.

IF PR(CurrentRowInArray) - PressureToCheck <
ClosestValueRbove - PressureToCheck AND PR(CurrentRowInArray) >
PressureToCheck THEN

ClosestValueAbove = PR(CurrentRowInArray)
RowOfClosestValueAbove = CurrentRowInArray
END IF

'Check If This Row Is The Closest Value Below Whats
'Being Looked For.




IF PressureToCheck - PR{(CurrentRowInArray) <
PressureToCheck - ClosestValueBelow AND PR (CurrentRowInArray) <
PressureToCheck THEN
‘ ClosestValueBelow = PR (CurrentRowInArray)
| _ RowOfClosestValueBelow = CurrentRowInArray
| END IF
NEXT

'"Write The Rows Needed From The Array To The Output File.
'This Will Be Either 1 Row If There Is A Perfect Match,
'Or 3 Rows... The Two Values Above And Below And The Value
'Itself With 999s In Missing Values.

IF MatchFound$ = "True" THEN
PRINT #2, LTRIMS (STRS (HR (MatchRow))) + "," +
LTRIMS (STRS (DY (MatchRow))) + "," + LTRIMS (STRS (MO{(MatchRow))) + "," +
LTRIMS (STRS (YR (MatchRow))) + "," + LTRIMS (STRS (PR (MatchRow))) + "," +
LTRIMS (STRS (HT (MatchRow))) + "," + LTRIMS (STRS (TP (MatchRow))) + "," +
LTRIMS (STRS (DP (MatchRow))) + "," + LTRIMS (STRS (WD (MatchRow))) + "," +
LTRIMS (STRS (WS (MatchRow))) + "," 4+ LTRIMS (STRS (RH (MatchRow)))
ELSE
'No Match Found So The ‘Above’
'Value Must Be Written In Array
PRINT #2, LTRIMS (STRS (HR (RowOfClosestValueBRbove))) + "," +

LTRIMS (STRS (DY (RowOfClosestValueldbove))) + ", " +
LTRIMS (STRS (MO (RowOfClosestValueAbove)))
LTRIMS (STRS (YR (RowOfClosestValueAbove)))
LTRIMS (STRS (PR (RowOfClosestValueBlbove)))
LTRIMS (STRS (HT (RowOfClosestValueAbove)))
LTRIMS (STRS (TP (RowOfClosestValueAbove) ) )
LTRIMS (STRS (DP (RowOfClosestValueAbove) ) )
LTRIMS (STRS (WD (RowOfClosestValuelAbove)))
LTRIMS (STRS (WS (RowOfClosestValueAbove) ) )
LTRIMS (STRS (RH (RowOfClosestValueAbove) ))

+ o+ + + + + + o+
+ o+ + + o+ o+t o+

'Then The Actual Value With The Time, Day, Month, Year And

'999s

PRINT #2, LTRIMS (STRS (HR (RowOfClosestValuelAbove))) + "," +
LTRIMS (STRS (DY (RowOfClosestValueRAbove))) + ", " +
LTRIMS (STRS (MO (RowOfClosestValueAbove))) + ", " +
LTRIMS (STRS (YR (RowOfClosestValueAbove))) + ", " +

LTRIMS (STRS (PressureToCheck)) + ",999,999,999,999,999,999"

'Then The 'Below' Value

PRINT #2, LTRIMS (STRS (HR (RowOfClosestValueBelow))) + "," +
LTRIMS (STRS (DY (RowOfClosestValueBelow))) + "," +
LTRIMS (STRS (MO (RowOfClosestValueBelow) )
LTRIMS (STRS (YR (RowOfClosestValueBelow)
LTRIMS (STRS (PR (RowOfClosestValueBelow)
LTRIMS (STRS (HT (RowOfClosestValuelAbove)
LTRIMS (STRS (TP (RowOfClosestValueBelow)

)
))
))
))
))

+ + + +
+ + + + +




LTRIMS (STRS (DP (RowOfClosestValueBelow)
LTRIMS (STRS (WD (RowOfClosestValueBelow)
LTRIMS (STRS (WS (RowOfClosestValueBelow)
LTRIMS (STRS (RHE (RowOfClosestValueBelow)
END IF
NEXT
PRINT "Writing To Output File"

))
))
))
))

'Go Back And Do It All Again For The Next Different Time And Date
LOOP

PRINT "Total Lines‘Read"; TotalNumberOfLinesReadSoFar

CLOSE 1
CLOSE 2

END
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APPENDIX E
IDL® PROGAM USED TO FIND MEAN RH

Pro meanrh

; This program will calculate the mean relative humidity from 800 to

; 600 mb

n=2~0

S = A} A}

close, 5

openr, 5, ‘UAJUNE.txt’ ; This‘opens my upperair data for
; June

whilenot (eof)) do begin ; If the end of the file has not
; been reached
; start reading data lines

readf, 5, s ; Read the file and also number of

; spaces

if (strlen(s) GT 5) then n = n + 1 ; If the length of spaces exceeds 5
; then that data line is finished.
; Read next line

endwhile

; Read in the sounding data

data = fltarr(1l,n)
readf, 5, data
close, 5

; The next lines give each column of the new array a name

time = datalo, *}
day = datal1l, *]
month = datal2, *]
year = datal3, *]
pres = datal4, *]
hgt = datal[5, *]
temp = datale6, *]
dp = datal7, *]
dir datal[8, *]
spd datal9, *]
rh = datal(10, *]

keep = Where(pres EQ 800 or pres EQ 750 or pres EQ 700 or pres EQ 650
or pres EQ 600) ;This line will be used so that only those
;pressure levels needed will be used
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length = n_elements (keep); This tells how long the‘'new’data set will be

sum = fltarr(l) ; This makes sum a floating array with one column
1=0
test = data(*,keep) ; This makes an array of only rows as defined by

; keep above

; The following nested loop will average the new data array in
; increments of five. This is done so after 5 averages are performed,
; the loop starts over again

final = fltarr(12,n)
for j = 0, length-1, 5 do begin
sum = 0

for i = 0,3 do begin
meanrh = 1/ (alog(800) -$
alog(600)) * ((test (10,j+1) +test (10, j+i+1))/2* (alog(test(4,j+1))-$
alog(test (4,j+i+1)))
sum = sum + meanrh
endfor
for k = 0,10 do begin ; This do loop will put the meanrh value
; into every row that corresponds to that ;
;same day and time in the final array
final(11,1+k) = sum

endfor

1l =14+ 11 ; counter which ensures the next meanrh value goes in the
; correct row

endfor

; The next statements make the final array with all values including
; the mean rh value

final(0,*) = data(0,*)

final(1l,*) = data(1,*)
final (2, *) = data(2,*)
final(3,*) = data(3,*)
final(4,*) = data(4,*)
final(5,*) = data(5,*)
final(6,*) = datal(e,*)
final(7,*) = data(7,*)
final(8,*) = data(s8, *)
final(9,*) = data(9,*)
final (10, *) data (10, *)

; The next lines output the array to a file




openu, outfile, “junwithmeanrh.txt”, /get lun,/append

form=’(5.0,2x,£5.0,2x,£f5.0,2x,£f5.0,2x,f5.0,2x,£5.0,2x,£f5.0,2x,£5.0,2x%,f
5.0,2x,£f5.0,2x,£5.0,2x)’

for i = 0, (n-1)/n do begin

printf, outfile, final, format = form
endfor

close, outfile

free lun, outfile

end




APPENDIX F
IDL® PROGAM USED TO FIND SSI

Pro SSI

; This program will calculate the Showalter Stability Index

n =20

s = AY 1

close, 5

openr, 5, ‘UAJUNE.txt’ ; This opens my upperair data for
; Jdune

whilenot (eof)) do begin ; If the end of the file has not
; been reached
; start reading data lines

readf, 5, s ; Read the file and also number of

; sSpaces

if (strlen(s) GT 5) thenn = n + 1 ; If the length of spaces exceeds 5
; then that data line is finished.
; Read next line

endwhile

; Read in the sounding data

data = fltarr(12,n)
readf, 5, data
close, 5

; The next lines give each column of the new array a name

time = datal(0, *]
day = datali, *]
month = datal2, *]
year = datal3, *]
pres = datal4, *]
hgt = datal5, *]
temp = datale, *]
dp = datal7,*]
dir = datals, *]
spd = datal[9, *]
rh = datal[10, *]
mean = datal[11l, *]

Cp = .24 ; Specific heat of dry air at constant pressure
C = 273.16 ; 0 degrees Celsius in Kelvin

Epsilon = .05 ; Error margin when temperature at 500 mb
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Keep = Where(pres EQ 850 or pres EQ 500); This keeps pressure
; levels needed for SSI
test = data(*,keep) ; makes an array of values defined by keepé6,])

xxkkxxxxxkxxxxxxxxThe following do loop calculates SSI****kkxx*
******************Many steps involved**************************

length = n_elements (keep)
SSI = fltarr(l) ;SSI will be a floating array with 1 column
final = fltarr(13,n) ;The final array will be 13 by n as read above

for j = 0, length-1,2 do begin
ssi =0

;The following finds the temp at the LCL reported in Kelvin

Tlcl = (test(7,j) - ((.212+.001571*test(7,j)-.OOO436*$
test (6,3)) *(test(6,]) -test(7,3))) +C)
T850 = test(6,j)+ C ; 850 mb temp converted to Kelvins

!

TD850 = test(7,j) + C; 850 mb dewpoint converted to Kelvins

T500 test(6,3j+1) + C; 500 mb temp converted to Kelvins

PLCL

It

850%* ( (T1lcl/T850) " (1/.2854); Pressure level at LCL

; The fbllowing determines which form of Teton’s formula to use and
;jalso which equation to find the latent heat of water vapor

if(Tlcl GE C) then begin

e

6.11*10" ((7.5*(Tlecl-C))/(237.3+(Tlcl - C)))

L (597.3 - (.564*(Tlcl-C)))

endif else begin

6.11*10‘((9.5*(T1c1-C))/(265.5+(T1c1 - C)))

e =
L = (597.3 - (.574*(Tlcl-C)))
endelse

Rlcl = ((.62197%e)/(Plcl-e)); Mixing ratio at the LCL

Thetad = (Tlcl* ((850.0/(Plcl-e))”(.2854))); Partial Potential
; Temperature at LCL
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; The

Thetase = thetad* (exp((L*R1lcl)/(CP*Tlcl))); Psuedo-equivalent
; Potential Temperature
; at LCL

TP = (C-5.0) ; This is the estimated value of temperature at

; 500 mb.
DeltaT = .05 ; Estimated value of change in T
EP = 6.11%10"((9.5* ((TP-C)))/ (265.5+((TP-C))) ;Vapor Pres at 500mb
LP = (597.3 - (.574*(TP-C))); Latent heat of water vapor at 500mb
RP = ((.62197*EP)/(500.0-EP)); Mixing Ratio at 500 mb

ThetaP = TP*((850.0/(500.0-EP))”(.2854)); Partial Potential
; temperature at 500 mb

Thetaep = ThetaP* (exp ( (LP*RP/ (CP*TP))); Psuedo-equivalent
; Potential Temperature at
; 500 mb

following if/then statements are used to get the estimated value

; of the 500 mb temperature as close to zero as possible
; This will give the closest approximation to our actual value

jumpl:

err = (thetaep-thetase)

if (abs(err) LT epsilon) then begin ; if the error is < .05 accept
; as the true value of 500 mb

TP500 = TP
Goto, jump2 ; Actual value found, goto this line

endif else begin

TP2 = TP + DeltaT ; value is not <.05. Add value of deltaT and
; calculate again
EP = 6.11*%10" ((9.5* ((TP2-C)) )/ (265.5+((TP2-C)))
LP = (597.3 — (.574%(TP2-C)))
RP = ((.62197*EP)/(500.0-EP))

ThetaP = TP2*((850.0/(500.0-EP)) " (.2854))
Thetaep = ThetaP* (exp ( (LP*RP/ (CP*TP2)))
Errp = (thetaep - thetase) |
endelse

if (abs(errp) LT epsilon) then begin; if the error is < .05 accept
; as actual temperature
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TP500 = TP2
Goto, jump2

endif else begin
;The following if/then statements compares the signs of the estimated
;temperature. If they differ in sign, divide delta by 2 and

;jrecalculate

| if ((err LT 0 and errp GT 0) or (err GT 0 and errp 1t 0)) then $
begin

DeltaT = (.5*(DeltaT))
Goto, jumpl
endif else begin

;If the signs of the estimated temperatures are the same, compare
;the new estimated temperature with the old

if (abs (errp) 1t abs(err)) then begin
TP = TP2
err = errp
Goto, jumpl
endif else begin
;If the above don’'t work, make the estimated temperature negative and
;try coming from the opposite direction
DeltaT = (-1.0%* (DeltaT))
Goto, jumpl
endelse
endelse
endelse
; The folléwing statements calculates the SSI
jump2: SSI = (T500 - TP500)
; The following statements put the SSI value in the array

for k = 0,10 do begin

final (12,y+k) = SSI

endfor
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y=y+11

endfor

final (0, *)=data (0, *)

final(1,*) = data(1, *)
final(2,*) = data(2,*)
final(3,*) = data(3,*)
final(4,*) = data(4,*)
final(5,*) = data (5, *)
final(6,*) = data(e, *)
final(7,*) = data(7,*)
final (8, *) = data(8,*)
final (9,*) = data(9, *)
final (10, *) = data(10,*)
final (11, *) = data(11,*)

; Send to newfile

openu, outfile, “FullJun.txt”, /get lun,/append
form='(5.0,2x,£f5.0,2x,f5.0,2x,£f5.0,2x,f5.0,2x,£f5.0,2x,f5.0,2x,f5.0,2x, f

5.0,2x,£f5.0,2x,£f5.0,2x) '

for i = 0, (n-1)/n do begin

printf, outfile, final, format = form
endfor

close, outfile

free_lun, outfile

end




APPENDIX G
MATHCAD® TEMPLATE TO FIND NPTI

jun = C:/JunFinal.xls This reads in Upper Air Data

C = C:/Thesis/Constants Constants that are given in Appendix 1

3 11 611950 | 850 | 1577 18 41 360 6
3 11 61950 500 | 5910 7| -15 23 15
3 12 611950 850 | 1536 17 13| 338 6
3 12 6| 1950 | 500 | 5856 81 -18| 315 23
6 18 61950 850 | 1560 17 13| 338 4
jun = 6 18 61950 500 | 5898 6| -211 203 8
4 20 61950 | 850 | 1565 17 10| 135 6
4 20 611950 500 | 5892 -1 -13| 270 10
3 21 6|1950| 850 | 1576 17 16| 180 8
3 21 6| 1950 | 500 | 5938 61 -11| 180 6
4 22 6| 1950 | 850 | 1605 18 15| 360 4
4 22 6| 1950 | 500 } 5946 -7 17} 113 4
3 25 6| 1950 | 850 | 15687 20 10 45 2

kxr i

i below depicts 850 mb, j below depicts 500mb. Thus row 1 above is the 850 mb values
and row 2 above is the 500 mb values for the SAME sounding. Row 3 & 4 are the NEXT 850 &
500mb values for the next sounding. Month and day below create a new matrix with only values
of June and the Day from the above chart. Daynum finds the day number (out of 365 days) that
the sounding was taken on.

month :=submatrix(jun, I,rows(jun), 3, 3)
i:=1,3. rows(jun) day :=submatrix(jun, 1, rows(jun),2,2)

ji=2,4. rows(jun) year !=submatrix(jun, I,rows(jun),4,4)
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daynum(m, d) := | (120+d) if m=5
(1514+d) if m=6
(181+4d) if m=7
(212+d) if m=8
(2434 d) if m=9

DAYi :=daynum (monthi, dayi) DAY

Dir and spd below make 2 separate arrays from the values of the June matrix above. sand t are
arrays that find the orthogonal components of the 850mb wind while u and v are arrays that find the
orthogonal components of the 500mb wind. RH is the mean RH value for each individual sounding
and SS is the Showalter Stability Index from each sounding.

dir :=submatrix(jun, I,rows(jun),9,9)
spd :=submatrix(jun, 1, rows(jun), 10, 10)

s, = sin[(diri-.017453§ + ]-spdi u, :=sin[(dirj-.0174533 + ]-spc‘lj

ti = cos[(diri-.017453% +7 :I-spdi V,’ :=cos[<dirj-.017453$ +7 ]-spdj

RH !=submatrix(jun, 1,rows(jun), 12,12)

SS :=submatrix(jun, 1,rows(jun), 13,13)
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-0.0000161569

2.2476254955 -5.56310881

1.498416997

-3.7087392067

-5.8609693028 -13.8075717935
0
-16.2634942875

0

16.263417647

The equations below are what Neumann used to find the probability of a thunderstorm. The
constants C are in an 5 X 30 matrix. When k = 1, the constants for May are being used, when k =
2 June is being used and so on to k = 5 when September is being used. X1 = 850mb wind
probability, X2 = 500mb wind probability, X3 = RH probability, X4 = SSI probability, and X5 = day
number probability.

k:=2

X, :=[C1 (T O st G i+ Gy st Cs,k'(si>2+ Ce,k'(ti)z"' C7,k'<s‘>3 + Cs,k'(si)z'ti]

1
AYTY l(ti) +C10k< )3

X2, :=[C11 kT Cik
3
*Clx j'(vj> +C20 k ( )

X376 kG (REACyy ( i) +C24,k'(RHi)3

u + C v + C14 K uJ V. + C15 k-(uj>2+ C16’k-<vj)2+ C17’k-<uj>3 + Cls,k'<uj)2'vj:|

X4, 1= Crs 1SS, +C

Cys kT 26k 27,k'<SSi>2

. 2
X5, 1= Chq Gy DAY + Czo,k'(DAYi)




0.5086586348

0.163329974

0.6102192 0.3634552678
0
0.3939629388

0.4043255964

The matrix rég below are the coefficents in the final regression used to find the probability of a
thunderstorm at Cape Canaveral. Once again, when k =1 is equivalent to May, etc..

[~ 15896 -.55562 -.55538 -.46230 -.61830)]
-.55031 .61025 -.63705 -.63916 -.52693
37382 48518 41542 40614 60655

87| 30330 36460 49820 42442 55390
56569 35416 42179 56766 48315
| 02053 63915 23614 06062 1.29491)
ki=2

Pi i=reg, kT regz’k~X1i + reg3,k-X2i_'_1 + reg4’k-X3i + regs,k-X4i + reg(),k-XSi
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0.4906521555

0.4455913039 The final probability of thunderstorm occurrence is
given to the left.

0.4793498754

1= C:/NeumannTimeConstants.xls Reads in Neumann Time constants

Now to find the timing of thunderstorm occurrence, Neumann chose 4 variables. V and W equal
the 850mb wind component, X = day number, and y = probability of thunderstorm. These variables
are then put in an equation which creates a time.

V.:=S,
1 1
w. =t
1 1
| x :=DAY.
y :=P.

[1 +12y+1 ) +14'(Yi)3+15"%+16"%'yi+17"%‘( ) +lp(x ) +(x ) Yo+l (x +1 W ]
+ 1 Wy, +113 (yi>2+114~wi'x1+1 ~w.~x-y.+l W ( ) +117( ) +118( )2-yi

+ 119( > x+1, ( i)31-1 Vit L, vy 4Ly <1> + L, Vox+Lovoxy Loy 1(1)2]
v wtk Levowey + Lovow x 1, - 1< 1) +131< ) +132( ) . +133< )2 x]

1
* 134'(Vi)2'wi+ 135'("i)3




17.1747030406
0
14.4313738901

14.6343081407

time, 1= | L trunc (S, ' time =
Be1

= trunc[[ (S, - B) 60] + 5]

1:100+13; if (J;- 60)<0




APPENDIX H

LOGISTIC PROBABILITY COEFFICIENTS

MAY JUNE JULY AUGUST SEPTEMBER
F(X1) F(X1) F(X1) F(X1) F(X1)
-2.457421520000000 -0.874825903000000 -0.125785528000000 -0.241378075000000 | -0.875096225000000
-0.175571837000000 | -0.108233194000000 | -0.136059651000000 | -0.112923323000000 | -0.084504822000000
-0.037791484600000 -0.060554339200000 0.005549849820000 0.005858891230000 | -0.019770930900000
0.001085144910000 -0.000866053496000 -0.0012654 17450000 0.004144994200000 | -0.000417157588000
-0.004474436480000 -0.002218383040000 -0.002731524130000 -0.001104244540000 | -0.001346995950000
0.001678172440000 0.002074498600000 -0.001842891370000 -0.002275158400000 | -0.002230010170000
-0.000037526658500 0.000052330503800 0.000090898567800 -0.000123380071000 | 0.000102828663000
0.000060294121200 -0.000071290665400 -0.000047764424300 -0.000035896639000 { -0.000156920183000
0.000199788826000 0.000027408632400 -0.000116388478000 0.000228944231000 | 0.000021176450200
-0.000092887354900 0.000065395335700 0.000000436216815 -0.000089218129100 | -0.000022163237600
F(X2) F(X2) F(X2) F(X2) F(X2)
-1.128088720000000 -0.936047050000000 -0.691599188000000 -0.459351617000000 | -0.741845629000000
-0.122880696000000 -0.162072255000000 -0.188523902000000 -0.134189574000000 | -0.073604312000000
-0.036525350700000 -0.098521851700000 -0.102000033000000 -0.056406428900000 | -0.077109490000000
0.001532821280000 -0.004770993980000 -0.000915040098000 0.001508761880000 | 0.003966308240000
-0.008127147900000 -0.002426121820000 0.000385324800000 0.000813519706000 | -0.002899762810000
0.000862859923000 0.000151235824000 -0.002692243840000 -0.001946461610000 | -0.002548287530000
-0.000137977701000 0.000186775455000 0.000288908716000 0.000233551088000 | 0.000107212321000
0.000062199563500 -0.000188589110000 0.000211414286000 0.000030393323200 | -0.000110120140000
0.000209652551000 0.000028614979800 -0.000034533031400 -0.000012635211800 | 0.000170345705000
-0.000089094 180300 0.000092777553000 0.000114394286000 0.000048540683500 | -0.000006620828770
F(X3) F(X3) F(X3) F(X3) F(X3)
-7.447942270000000 -3.445040770000000 -3.396935340000000 -3.874789910000000 {-19.866129600000000
20.750792000000000 -4.129954090000000 2.665734010000000 6.736364990000000 | 72.572139600000000
-20.279076100000000 | 28.902574000000000 8.290612650000000 -3.531710580000000 |-92.921926100000000
7.079657170000000 -22.665826700000000 -7.036471510000000 -0.226668992000000 | 40.859320200000000
F(X4) F(X4) F(X4) F(X4) F(X4)
-0.572143733000000 -0.0879854 11000000 -0.074042713000000 -0.237429897000000 | -0.708225493000000
-0.265854007000000 -0.223271178000000 -0.211274506000000 -0.197372491000000 | -0.300976816500000
-0.019557409700000 -0.033558867900000 -0.008983117750000 0.008716634960000 | 0.016509598900000
F(X5) F(X5) F(X5) F(X5) F(X5)
-0.374463884000000 -0.205195233000000 -0.345612993000000 -3.274033240000000 | 5.703364240000000
0.009375911490000 0.023353022300000 0.010333718300000 0.166762482000000 | -0.141837861000000
-0.000202255210000 0.000021921729900 -0.000246551690000 -0.002137242150000 | 0.000724549114000
Final Probability Final Probability Final Probability Final Probability Final Probability
Coefficients Coefficients Coefficients Coefficients Coefficients
-16.6123602 -7.02350958 -5.63431384 -5.13263981 -3.50185959
3.80953959 4.61139118 4.24573142 3.83315244 4.60598495
2.84121773 2.20907802 1.8743895 1.84741373 1.53949334
3.86390824 2.47766016 3.14187661 2.50967823 4.85909819
4.13317458 4.03659792 274126511 3.0462098 2.32653736
27.4441936 1.69227621 0.195046844 156.779011 -2.82196658




APPENDIX I
MATHCAD® TEMPLATE TO FIND LRP WITH NT

Jun= C:\JunFinal.xls C:\Logicconstants C is the matrix of coefficients
to be used in the logistical regression

Bl A O| O] W[ W[ W| W

(o] e} I} I o>} Be ) Be ) Be>} BN e]
WIWIN|IN]O]O| NN

**** | below depicts 850 mb, j below depicts 500mb. Thus row 1 above is the 850 mb values
and row 2 above is the 500 mb values for the SAME sounding. Row 3 & 4 are the 850 & 500mb
values for the NEXT sounding. Month and day below create a new matrix with only values of the
month and the day from the above chart. Daynum finds the day number (out of 365 days) that the
sounding was taken on.

i:=1,3.. rows(jun) month = submatrix(jun, 1,rows(jun), 3, 3)

j'=2,4. rows(jun) day = submatrix(jun, 1, rows(jun),2,2)

daynum(m,d) = | (1204 d) if m=5
(1514 d) if m=6
(181+d) if m=7
(2124 d) if m=8
(243+d) if m=9
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DAY, = daynum (monthi , dayi>

Dir and spd below make 2 separate arrays from the values of the jun matrix above. s and t create
arrays that find the orthogonal components of the 850mb wind while u and v are arrays that find the
otthogonal components of the 500mb wind. RH is the mean RH value for each individual sounding

DAY

and S5 is the Showalter Stability Index from each sounding.

dir ‘= submateix{jun, 1, rows(jun),2,MN
spd = submattix(jun, 1, rows(jun), 10, 10)

s, = sin[ (iz;0174533) + ?T]~spdi

= cos[ (d, 0174533) + ?T]-spdi

RH = submatsix(jun, 1, rows(jun), 12,12)
S5 1= submateix(jun, 1, rows(jun), 13,13)

-0.000016156922486
0
2.24762549552182
0
1.49841699701455
1]
-4.24263640286608
0
0.000010771281657

u = sin[ (dir;.0174533) + ?I]-spdj

v, = cos[ (diz, - 0174533) + H]~spdj

83

-5.99899989997825

-5.56310880959826

0

-3.70873920666551

D

4.274264497136817

0

7.99989999939275




The equations below are the way Everitt used to find the probability of a thunderstorm. First, he
regressed each variable separately to find X1...X5. Then he logistically regressed these variables to
find a new probability that is constrained between 0 and 1. The constants C are in an 5 X 30

matrix. When k = 2, the constants for June are being used. X1 = 850mb wind probability, X2 =
500mb wind probability, X3 = RH probability, X4 = SSI probability, and X5 = day number probability.

ki=2

X1;=C  +C, s+ Cy 4 C, s, t+C5k( ) +c6k< ) +C, (i>3+C8’k~<sl.>2-ti...

G S ( ) '*'ka( >3

X1,
i
€

X1.
i

newXl. = Here is where the Logistic Regression comes in to play

1+e

X2.:= (Cu Kt Cax )+C13 Vit Cra v+ G k'(“j)z"' C16,k'(vj>2+cl7,k'(uj>3

+|Crg (@ ) Vit Cr J( ) +C20k( )3]

X2.

e J

newX2. :=
J X2,

1+e€ 1

X326y +Cp REH Gy ( )2+C24,k'(RHi)3

X3,
i
€

X3.
i

ne:wX3i =

1+e

— 2
X417 Cp  +Cog S8+ Cyp (Ssi)

X4,
i
€

X4.
i

newX4i =

l+e

- 2
X5,:= [C28,k +Cpo  PAY +Cyp (DAYi> ]

X5,

newX35. \=
! X5.

1+e
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The_matrix reg below are the coefficents in the final regression used to find the probability of a
thunderstorm at Cape Canaveral. As before, the logistically regressesed are linearly regressed to
find the final probability. This final probability is then logisitically regressed. Once again, when k
=2 is equivalent to June.

[-16.6123602 - 7.02350958 - 5.63431384 - 5.13263981 - 3.50185959
3.80953959 4.61139118 4.24573142 3.83315244 4.60598495
2.84121773 2.20907802 1.87438950 1.84741373 1.53949334
3.86390824 2.47766016 3.14187661 2.50967823 4.85909819
4.13317458 4.03659792 2.74126511 3.04620980 2.32653736
| 27.4441936 1.69227621 .195046844 156.779011 -2.82196658]

k:=2

reg \=

Pi = (reg1 X + regz,k-nelei + reg3,k-newX2i_H + reg4’k-newX3i + reg57k~neWX4i + regG’k-newXSi)

P.
i
€

ﬁnalPi = -
l+e'
.73183479180746 03530 18

0 0
0.526892400730081 0.628758022595704
0 0
1.27667558343219 0.218116644161796
0 0
1.57485667580443 0.171525135995851
0 0
-0.633488991211053 0.346719841122936
p 0 0
0.690815099104199 0.666148225070128
0 0
-0.174291672254547 0.456537051230765
0 0
~1.18191539064362 0.234707978689377
0 0
~1.7442491629805 0.148774015741928
0 0
2.79673528277125 0.057500850237968
0 0
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1=C:/N eumannTimeConstants.xls Reads in Neumann Time constants

To find the timing of thunderstorm occurrence, Neumann chose 4 variables. V and W equal the
850mb wind components, x = day number, and y = probability of thunderstorm. These variables
are then put in an equation which finds a number which is equivalent to the time.

V. I=8,

1 1
w, :=ti
x. :=DAY.
1 1
y; = ﬁnalPi

1

5 :2[11+12'yi+13'<yi>2+]4'(yi>3+ X+ 16"‘1'yi+17"‘1'<yi>2+ 18'("1)2"' ]9'("1)2‘yi+ 110'("{"'111“’%]
+ Ilz'wi'yi"'113'Wi'(yi>2+114'Wi'xl+lls'wi"%'yi"'lls'wi'(x.)z*']17'<Wi)2+118'(wi>2'yi

1 1
Ly VWit L VW y by vow x4 ]30'Vi'(wi)2+ 131'(Vi)2 +1y (Vi>2'yi +1Ly <Vi)2"‘l]

tly (Vi>2'wi + 135',("1)3

1 he (Wi>2"‘i +hy (wi)3 Ly Vit vyt Ly vy (y_)z LV LevexyHhevy <")2]

16.1253246797798 The if/then loop below changes the S output into hours and minutes
0
13.5940327235802
0
15.6225291917357 time. = | Le trunc (S)
0 1 1 1
16.3156784632206 BeL
0 Je trunc[[ (si - Bi) ~60] + .5]
15.2413040744336 1100+ 7. if (J._. 60)<0
o 1 1 1
13.5556249682673
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time
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APPENDIX J
LINEARLY REGRESSED TIME COEFFICIENTS

JUNE JULY AUGUST |SEPTEMBER

-7.09E-03 | -1.36E+03 |5.77E+03 | -1.03E+04
1.60E+03 | -1.47E+03 | 1.03E+03 | -1.51E+03
98.216 -113.913 75.703 71.792

-16.902 -1.395 19.952 -28.209
-4.68 23.207 -77.515 120.826

-19.461 14.498 -9.681 11.342
-0.426 0.596 -0.217 -0.323

0.058 -0.129 0.348 -0.472

0.059 -0.036 0.023 -0.021

-1.74E-04| 2.38E-04 |-5.19E-04| 6.14E-04
-17.573 -48.224 77.802 40.377

-3.148 -1.466 15.849 14.122
-0.549 -1.557 -1.126 -1.131
0.21 0.489 -0.688 -0.308
0.024 5.30E-03 -0.068 -0.055
-6.39E-04 | -1.24E-03 | 1.52E-03 | 5.82E-04
0.082 -0.081 -0.089 -0.367
4.07E-03 0.029 -0.032 -0.033

-5.54E-04| 4.29E-04 | 4.00E-04 | 1.45E-03
511E-04 | -4.28E-04 (-6.77E-04| 1.25E-03

1.053 -47.129 1.109 -111.619
-10.301 11.743 -6.639 76.626
-0.436 0.941 7.49E-03 -6.41
0.012 0.473 -0.018 0.857
0.063 -0.059 0.032 -0.296
-1.06E-04 | -1.18E-03 | 5.84E-05| -1.64E-03
0.124 -1.58E-03 0.405 0.118
0.016 4.71E-03 -0.055 -0.033

-7.76E-04| 5.62E-05 (-1.71E-03| -4.63E-04

-3.94E-05( 2.54E-04 | 5.17E-05| -9.93E-04

| 0.148 0.18 -0.16 -0.314

| 0.027 2.10E-03 | 1.68E-03 -0.032

1 _ -9.09E-04 | -9.33E-04 | 6.87E-04 | 1.11E-03
-4.86E-04 | -1.41E-04 |-8.65E-04| 8.79E-04

‘ -421E-04 | -3.49E-04 | 2.64E-04 | -6.39E-04




APPENDIX K
MATHCAD® TEMPLATE TO FIND NP WITH LRTC

Pr:

This file is simply Neumann's probability found by using his
CJune\Pr s method described in Appendix J. It was cut and pasted to
an Excel Spreadsheet so could be easily read by MathCad.
data = This file was taken from an Excel spreadsheet. The
(= spreadsheet uses Equation 12 and performs the appropriate
C-Wunetfistpd)xls calculations to the variables. These are then used to

produce the new timing coefficients.

y :=submatrix(data, 1,rows(data), 36,36)

nx :=submatrix(data, 1,rows(data),1,35)

- 1 .
1:= (nxT.nx> .nxT.y Matrix algebra that performs linear regression

NEW TIME COEFFICENTS




z:=1.. (datatest )

nDIR :=submatrix(randata, 1, rows(randata ), 9,9)
nSPD :=submatrix(randata, 1, rows(randata ), 10, 10)

S, :=sin[ (nDIRZ_.0174533; e ]-nSPDZ Same method as described earlier to
find variables needed for time

T :=cos[ (nDIRz~.017453§ +7 ]~nSPDZ

mth :=submatrix(randata, 1, rows(randata ), 3, 3)

dy :=submatrix(randata, 1, rows(randata),2,2)

Daynum(m,d) := | (120+d) if n=5
(151+d) if =6
(1814 d) if m=7
(212+d) if n=8
(243+d) if m=9

D, :=Daynum (mthz, dyz)

Now to find the timing of thunderstorm occurrence, Neumann chose 4 variables. V and W equal
the 850mb wind component, X = day number, and y = probability of thunderstorm. These variables
are then put in an equation which creates a time.

v =8
z VA

w =T
z V4




NOTE: L in testtime below are the NEW time coefficents found from above.

9
2

testtimez :=[ll+12.y2+]3.(yz>2+14.<yz>3+15'Xz+16lxz.yz+17‘xz'<yz)2+] ( z)2+1 ( ) Yy +110 ( >3]
|

+ l1 ‘W +112~w -y +113- Z-(yz)2+1 WX +1 sW,XY, +1 Z(xz> +1]7( )
(

* 118( ) Y "'119( ) 'xz"'lzo'( ) +h vt v,y +123 z yz>
+ 125v Xy +126 ; ( Z) +127’Vz'wz+lzs'vz'wz'yz+12 VoW x+l30 Z(wz>2]

z'z°z 9 z

* ljl'("z) t 32'<Vz> 'yz+133'(vz)2'xz+134' (Vz)z'wz+l35'(vz>3

The if/then loop below changes the S output into hours and minutes

time =
z

time

I «trunc <testtime )
z Z
Bel

z z

Jze— trunc[[ (testtimez— BZ) -60] + .5]

1100+ if (Jz— 6o)<0
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APPENDIX L
LINEARLY REGRESSED TIME COEFFICIENTS USING LOGISTICALLY
REGRESSED PROBABILITIES

JUNE JULY AUGUST | SEPTEMBER

-7.11E-03| -2.11E+03 | 7.93E+03 | -2.10E+04 -
-49.093 | 1.65E+03 | -392.542 | 3.14E+03
74717 | -426.481 | -458.287 | 3.30E+03
11.935 18.545 -14.878 -325.863

0.192 31.152 | -105.224 243.195

0.525 -15.264 4.886 -28.245
-0.549 1.961 2477 -11.838
-9.19E-04| -0.153 0.465 -0.939
-1.11E-03 0.035 -0.014 0.062
1.68E-06 | 2.50E-04 |-6.81E-04| 1.21E-03
6.126 -50.857 59.032 22.011
6.652 2.971 1.042 1.37
-0.987 1.489 5.12 -16.237
-0.093 0.5 -0.52 -0.164
-0.036 -0.019 -0.016 2.03E-03

3.26E-04 | -1.22E-03 | 1.15E-03 | 2.98E-04
0.053 0.011 7.27E-04 -0.329
-0.017 0.011 -0.02 -0.177

-3.38E-04 | -8.07E-05 |-3.59E-06| 1.32E-03

8.63E-04 | -3.41E-04 |-5.50E-04| 1.03E-03
23.743 18.959 -18.055 -99.362
-4.899 -13.965 -29.393 28.168

1.903 3.641 -0.293 -2.431
-0.264 -0.169 0.206 0.781
0.021 0.055 0.134 -0.094
7.36E-04 | 3.84E-04 |-561E-04| -1.53E-03
0.033 0.141 -0.085 0.15
-0.044 -0.012 0.077 -0.283

-3.97E-05| -5.83E-04 | 3.94E-04 | -5.28E-04
-6.17E-04} 6.07E-04 | 8.89E-04 | -8.30E-04
-0.076 -0.082 -0.361 -0.286
0.013 0.104 0.05 0.197
4.63E-04 | 1.97E-04 | 1.54E-03 | 9.40E-04
-8.75E-04 | -8.90E-04 [-8.55E-04| 1.35E-03
-2.14E-04 | 4.78E-04 | 8.24E-04 | -2.04E-04
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APPENDIX M
MATHCAD® TEMPLATE TO FIND LRP WITH LRTC

Pr:= This file is the probabilities found when using
E logistical regression. It was cut and pasted to an
CWunelLogPrxls Excel Spreadsheet so could be easily read by
MathCad
data ;= This file was taken from an Excel spreadsheet. The
! spreadsheet uses Equation 12 and performs the
C:Munetflogstpd).xls appropriate calculations to the variables. These are

then used to produce the new timing coefficients.
v := submattix( data, 1, rows( data), 36,36)

ny = submateix data, 1, rows( data), 1,35)

NEW TIME COEFFICENTS




z:=1.. (datatest )

nDIR :=submatrix(randata, 1, rows(randata ),9,9)
nSPD :=submatrix(randata , 1, rows(randata ), 10, 10)

= sin[ <nDIRZ~.0174533 7 ]-nSPDZ
g :=cos[(nDIRZ~.0174533) 7 ]-nSPDZ

mth !=submatrix(randata, 1, rows(randata ), 3,3)

dy :=submatrix(randata , 1, rows(randata ), 2,2)

Daynum(m,d) := | (1204+d) if m=5
(151+d) if n=6
(181+4d) if m=7
(212+d) if n=8
(2434 d) if m=9

DZ '=Daynum (mthz, dyz)

Now to find the timing of thunderstorm occurrence, Neumann chose 4 variables. V and W
equal the 850mb wind component, X = day number, and y = probability of thunderstorm. These
variables are then put in an equation which creates a time.

v =S
¥4 V4
w =T
z z
x =D
z VA
yZ:=Prz

NOTE: L in testtime below are the NEW time coefficents found from above.

Z,
+ lll-w +1 WY, +1 . Z-(yz>2+l -w-x+l SW, XY +116 Z(xz> +ll7( )
* 118( ) y+119< )"”’1 < )+121V+122Vy+123 z<z> +hev, %,

2
Ly, %y, by z(xz> 1,V Wt Lev Wy + v WX z(wz>

* l31'("z> +132'<Vz) ’yz+133'<vz> 'Xz+]34'(vz> ’Wz+135‘(vz>3

testtime_ :=[1}+12.y2+13,<yz)z+14_(yz>3+15.x+1 oy AL (v )+ 1 ()P 1 (1) Py + 1 (% )3]
2
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The if/then loop below changes the S output into hours and minutes

time = |1 « trunc (testtime )

z zZ Z
Be1
z z

ch— trunc[[ (testtimeZ - BZ> ‘60] + .5]

1100+ if <JZ— 60><O
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APPENDIX N
MATHCAD® TEMPLATE FOR RANDOM VERIFICATION SET

jun = C:\JunFinal.xls

data .. = (submam'x(jun,newtest ,newtest , 1, 13)) This line pulls out ALL the values associated
z,13 z z .
with the random row number created above

randata := |new, & stack (data | o data, | 3) This for loop stacks all of the 850 data
’ ’ ’ together. That is ALL variables in row 1
for 1€ 2. datatest — 1 will be stacked above ALL variables in row
new, |, stack (newi_1 13,dataH_1 13) 143 and so on.
HEW gatatest— 1,13
z:=1.. datatest
test = round(md(rows(jun)),0) This line lets MathCad randomly pick 74 lines from the

jun matrix originally given. It also rounds the number
so it is a whole number.

newtest = (testz> +1 if mod(mtz, 1):0 This is if/then statement ensures that an odd number
2 is being pulled out. To find the time of T-storm
test otherwise occurrence only 850mb u and v wind components,
z Probability and Day Number are needed. Therefore,
an odd number will guarantee a row with 850mb
values.

newtest
So row 1 is the first row to be extracted, then row

143 from the jun matrix above will be tested.

Once these values were found, they were manually extracted from the upper air data.
These rows were then saved to another file. After all regressions and coefficients were
found, the verification data set was placed in prior appendices and a forecast starting time
was produced.
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